• Title/Summary/Keyword: Recurdyn

Search Result 27, Processing Time 0.028 seconds

A Study on the Cooperative Kinematic Inter-operation of 2-Axis (Tilting/Rolling) Additional Axes with a 6-Axis Articulated Robot Using Simulink of MATLAB and Recurdyn (MATLAB과 Recurdyn의 Simulink를 활용한 2축 부가 축과 6축 수직 다관절로봇의 기구적 연동에 관한 연구)

  • Bae, Seung-Min;Chung, Won-Jee;Noh, Seong-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.16-23
    • /
    • 2021
  • Currently, 6-axis articulated robots are used throughout the industry because of their 6-dof (degrees of freedom) and usability. However, 6-axis articulated robots have a fixed base and their movements are limited by the rotational operating range of each axis. If the angle of the 2-axis additional axes can be adjusted according to the position and orientation of the end-effector of the 6-axis articulated robot, the effectiveness of the 6-axis articulated robot can be further increased in areas where the angle is important, such as welding. Therefore, in this paper, we proposed a cooperative kinematic inter-operation strategy. The strategy will be verified using the Simulink of MATLABⓇ, an engineering program, and RecurdynⓇ, a dynamic simulation program.

A Simulation Study on the Dynamics Characteristics of Hot Pepper Harvester (시뮬레이션을 이용한 고추 수확기의 동적 특성 연구)

  • Kang, Seokho;Kim, Junhee;Kim, Yeongsu;Woo, Seungmin;Daniel, Dooyum Uyeh;Ha, Yushin
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.19-25
    • /
    • 2020
  • The field farming machine is difficult to develop due to its heavy slopes, tough roads and unformatted cultivation by growing crops. In particular, harvesting is a major problem in rural areas in Republic of Korea where aging is accelerated with work requiring a lot of time and manpower. This study seeks to analyze the dynamic characteristics of hot pepper harvester developed to replace manpower, reduce working hours and mechanize harvesting operations. To analyze the dynamic characteristics of a hot pepper harvester, the dynamic program Recurdyn was used and all analysis were performed as case of an empty vehicle. Based on the results, this study can suggest dynamic safety range of multi-purpose driving platform with hot pepper harvester.

Dynamic Responses Optimization of Vacuum Circuit Breaker Using Taghchi Method (실험 계획법을 이용한 진공 차단기의 동특성 최적화)

  • Jo, Jun Yeon;Ahn, Kil Young;Kim, Sung Tae;Yang, Hong Ik;Kim, Kyu Jung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.141-148
    • /
    • 2015
  • In this study, the VCB(Vacuum Circuit Breaker) has been developed using the Recurdyn that is widely used on multibody dynamics analysis. The VCB consists of three main circuits with the VI(Vacuum Interrupter) and the main frame with the operating mechanism. This analytic model is validated by comparing the simulation results and the experimental results. Generally, in order to reliably cut off the breaking current, the opening speed of the VCB after contact separation has to be a 0.9~1.1m/s. Therefore, the study of the design parameters of the VCB is needed. To improve the opening velocity, Taguchi design method is applied to optimize the design parameters of a VCB with a lot of linkages. In addition, to evaluate the improvement of the operating characteristics, the simulation results are compared with the Recurdyn and experimental results with improved prototype sample.

Implementation of LabVIEW®-based Joint-Linear Motion Blending on a Lab-manufactured 6-Axis Articulated Robot (RS2) (LabVIEW® 기반 6축 수직 다관절 로봇(RS2)의 이종 모션 블랜딩 연구)

  • Lee, D.S.;Chung, W.J.;Jang, J.H.;Kim, M.S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.318-323
    • /
    • 2013
  • For fast and accurate motion of 6-axis articulated robot, more noble motion control strategy is needed. In general, the movement strategy of industrial robots can be divided into two kinds, PTP (Point to Point) and CP (Continuous Path). Recently, industrial robots which should be co-worked with machine tools are increasingly needed for performing various jobs, as well as simple handling or welding. Therefore, in order to cope with high-speed handling of the cooperation of industrial robots with machine tools or other devices, CP should be implemented so as to reduce vibration and noise, as well as decreasing operation time. This paper will realize CP motion (especially joint-linear) blending in 3-dimensional space for a 6-axis articulated (lab-manufactured) robot (called as "RS2") by using LabVIEW$^{(R)}$ (6) programming, based on a parametric interpolation. Another small contribution of this paper is the proposal of motion blending simulation technique based on Recurdyn$^{(R)}$ V7 and Solidworks$^{(R)}$, in order to figure out whether the joint-linear blending motion can generate the stable motion of robot in the sense of velocity magnitude at the end-effector of robot or not. In order to evaluate the performance of joint-linear motion blending, simple PTP (i.e., linear-linear) is also physically implemented on RS2. The implementation results of joint-linear motion blending and PTP are compared in terms of vibration magnitude and travel time by using the vibration testing equipment of Medallion of Zonic$^{(R)}$. It can be confirmed verified that the vibration peak of joint-linear motion blending has been reduced to 1/10, compared to that of PTP.

The System Position from High Firing Rate of Anti-Aircraft Gun system (고발사율 대공포 발사에 따른 체계자세 연구)

  • Hwang, Boo Il;Lee, Boo Hwan;Kim, Chi Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.611-615
    • /
    • 2015
  • Anti-aircraft gun system is used for low-level air defense system and has more than twin guns with high firing rate in order to maximize the capability of defense. Gun's vibration and bullet's variance has a critical effect on accuracy and hit probability of weapon system such as anti-aircraft gun system with high firing rate. Typical mechanism to reduce the amount of vibration and shock during gun-fire process is very important design factor. In this paper, the suspension characteristics of the vehicle are studied for the improvement of isolating performance of gun firing system with high firing rate. Gun fire test for the vehicle is conducted and computational models using Recurdyn and Adams are created based on test results. Through this study, results of computational analysis are compared with the real test results, which includes type, location and quantity of suspension and gun mechanism are selected for anti-aircraft gun. From the result of this study, we could make basic design and consider the proper component of the system such as suspension and gun spring.

Structural Safety Analysis of Launching System Through Monte-Carlo Simulation (몬테 카를로 시뮬레이션을 통한 발사관 구조 안전성 분석)

  • Park, Chul-Woo;Lee, Onsoo;Shin, Hyo-Sub;Park, Jin-Yong;Lee, Dong-Ju
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.69-77
    • /
    • 2018
  • Launching system is designed to store the payload, withstand the rigors, and prevent it from rusting and damaging. The behavior during initial deployment of the missile is determined by production, assembly and insertion condition of a launching tube and a missile. The purpose of this research is to confirm the safety of a launching tube by statistically analyzing behavior of the missile, during initial deployment stage. Error parameters which effect initial behavior of the missile are selected and analyzed through Monte-Carlo Simulation. Based on the result of simulation, tip-off and stress distribution between rail and shoe is predicted by using the commercial analysis program called Recurdyn. Lastly, the safety factor is calculated based on yield strength of the material and maximum stress of the rail during the process of launching. The safety of the launching system is verified from the result of the safety factors.

Precise Control Law Design of Robot Finger Embedding Distributed Actuation Mechanism (분산 구동 메커니즘을 내장한 로봇 핑거의 정밀 자세 제어기 설계)

  • Shin, Young-June;Kim, Kyung-Soo;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.846-851
    • /
    • 2010
  • In this paper, we newly propose a novel control strategy of a three joints-robot finger for the purpose of artificial hands. The robot finger is specifically modeled by using a 3D CAD program (CATIA), considering human fingers, and then the proposed control method is verified through the dynamic simulation tool (Simulink and Recurdyn R2). Each slider is individually controlled to be located at the optimal positions where the maximal joint torque can be generated. To prove the effectiveness of the proposed control method, we devise two cases for the reference position of sliders. By comparing the control performance of two cases, the validity of the proposed control method will be verified.

Statistical Analysis of Initial Behavior of a Vertically-launched Missile from Surface Ship (수상함에서 발사된 수직 발사 유도탄 초기 거동의 통계적 해석)

  • Kim, Kyung-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.889-895
    • /
    • 2012
  • A vertical launching system(VLS) is a system for holding and firing missiles on surface ships. When a missile is launched in VLS, relative motion between canister and missile and drag force induced by wind can cause initial unstability of a missile. Thus dynamic analysis of initial behavior of vertically launched missile should be performed to prevent collision with any structure of a ship. In this study, dynamic analyses of initial behavior of vertically launched missile are performed using Monte-Carlo simulation, which relys on random sampling and probabilistic distribution of variables. Each parameter related with dynamic behavior of a missile is modeled with probability variables and Recurdyn, a commercial software for multi body dynamic analysis, is used to perform Monte-Carlo simulation. As a result, initial behavior of a missile is evaluated with respect to various performance indexes in a probabilistic sense and sensitivity of the each parameters is calculated.