• Title/Summary/Keyword: Rectifier Circuit

Search Result 442, Processing Time 0.024 seconds

A Self-Excited Induction Generator with Simple Voltage Regulation Suitable for Wind Energy

  • Ahmed Tarek;Nishida Katsumi;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.205-216
    • /
    • 2004
  • In this paper, a three-phase induction machine-based wind power generation scheme is proposed. This scheme uses a low-cost diode bridge rectifier circuit connected to an induction machine via an ac load voltage regulator (AC-LVR) to regulate dc power transfer. The AC-LVR is used to regulate the DC load voltage of the diode bridge rectifier circuit which is connected to the three-phase self-excited induction generator (SEIG). The excitation of the three-phase SEIG is supplied by the static VAR compensator (SVC). This simple method for obtaining a full variable-speed wind turbine system by applying a back-to-back power converter to a wound rotor induction generator is useful for wind power generation at widely varying speeds. The dynamic performance responses and the experimental results of connecting a 5kW 220V three-phase SEIG directly to a diode bridge rectifier are presented for various loads. Moreover, the steady-state simulated and experimental results of the PI closed-loop feedback voltage regulation scheme prove the practical effectiveness of these simple methods for use with a wind turbine system.

A Method to improve the input current waveform in a single phase Rectifier (단상 정류회로의 입력 파형 개선 방법)

  • Yu, Chul-Ro;Han, Woo-Yong;Lee, Su-Weon
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1005-1008
    • /
    • 1992
  • This paper deals with a method to Improve the input current waveform in a single phase Rectifier. This method is based on the sophisiticated utilization of the auxiliary circuit consisting of two SCRs and a interphase reacter and the condenser necessary for reducing the fluctuating voltage in output side. The basic theories of the proposed system is treated, and its validity is verified with simulation.

  • PDF

A High Performance ZVT-PWM Boost Rectifier with Soft Switched Auxiliary Switch (스프트 스위칭 보조 스위치를 가지는 ZVT-PWM 부스트 컨버터)

  • 김윤호;김윤복;정재웅
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.265-268
    • /
    • 1998
  • This paper presents a soft-switching average current control PWM high power factor boost converter. Conventional boost ZVT-PWM converter has a disadvantage of hard-switching for auxiliary switch at turn-off. A soft switched auxiliary switch is proposed to achieve a high performance ZVT-PWM boost rectifier. The simulation and experimental results show that soft switching operation can be maintained for wide line and load range, which in turn improves the converter performance in terms of efficiency, switching noise and circuit reliability.

  • PDF

Simulink Model of 3-Phase Diode Rectifiers (3상 다이오드 정류기의 Simulink 모델)

  • Lee Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.514-519
    • /
    • 2001
  • Most of inverters adopt a diode rectifier as an input stage, which has very simple and rugged structure and therefore low cost. In order to properly design the 3-phase diode rectifier with an output smoothing capacitor and input inductors, it is necessary to fully simulate the system due to its nonlinear characteristics. Therefore this paper describes the operating behaviors including the current commutation in detail by using the proposed equivalent circuit, and also proposes the Simulink-based model of the system. The simulation results show the validity of the proposed model in all operating conditions.

  • PDF

A Study on the Two Transistor Forward Converter using Synchronous Rectifier (동기정류기를 이용한 Two Transistor Forward 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kwon, Soon-Do;Lee, Kyu-Hoon;Cho, Kyu-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1163-1165
    • /
    • 2003
  • This paper presents the TTFC(Two Transistor Forward Converter) using Synchronous Rectifier. The principle of operation, feature ana design considerations are illustrated and verified through the experiment with a 200W 100kHz MOSFET based experimental circuit.

  • PDF

Interleaved ZVS Resonant Converter with a Parallel-Series Connection

  • Lin, Bor-Ren;Shen, Sin-Jhih
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.528-537
    • /
    • 2012
  • This paper presents an interleaved resonant converter with a parallel-series transformer connection in order to achieve ripple current reduction at the output capacitor, zero voltage turn-on for the active switches, zero current turn-off for the rectifier diodes, less voltage stress on the rectifier diodes, and less current stress on the transformer primary windings. The primary windings of the two transformers are connected in parallel in order to share the input current and to reduce the root-mean-square (rms) current on the primary windings. The secondary windings of the two transformers are connected in series in order to ensure that the transformer primary currents are balanced. A full-wave diode rectifier is used at the output side to clamp the voltage stress of the rectifier diode at the output voltage. Two circuit modules are operated with the interleaved PWM scheme so that the input and output ripple currents are reduced. Based on the resonant behavior, all of the active switches are turned on under zero voltage switching (ZVS), and the rectifier diodes are turned off under zero current switching (ZCS) if the operating switching frequency is less than the series resonant frequency. Finally, experiments with a 1kW prototype are described to verify the effectiveness of the proposed converter.

A Study on the Status Monitoring and Fault Analysis of the Switching Rectifier for Power Factor Correction (역률개선용 스위칭 정류기의 데이터 수집과 저장에 관한 연구)

  • Ahn, Tae-Young;Im, Bum-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.49-56
    • /
    • 2016
  • In this paper, a prototype of power supply with a power factor correction is proposed. As a unique feature the proposed power supply, a status monitoring circuit is embedded on the switching power supply. The status monitoring circuit analyzes the functionality of the system and saves the key components of the power supply in the case of malfunctions. The results of various fault tests are reported to verify the operation and performance of the proposed method. This paper discusses the experimental results of the monitoring module and provides the technical information to monitor, predict, and troubleshoot the system against the potential failure of power supplies for real applications.

Digital Control of a Power Factor Correction Boost Rectifier Using Diode Current Sensing Technique

  • Shin, Jong-Won;Hyeon, Byeong-Cheol;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.903-910
    • /
    • 2009
  • In this paper, a digital average current mode control using diode current sensing technique is proposed. Although the conventional inductor current sensing technique is widely used, the sensed signal of the current is negative. As a result, it requires an additional circuit to be applied to general digital controller ICs. The proposed diode current sensing method not only minimizes the peripheral circuit around the digital IC but also consumes less power to sense current information than the inductor current sensing method. The feasibility of the proposed technique is verified by experiments using a 500W power factor correction (PFC) boost rectifier.

Asymmetrical Pulse-Width-Modulated Full-Bridge Secondary Dual Resonance DC-DC Converter

  • Chen, Zhangyong;Zhou, Qun;Xu, Jianping;Zhou, Xiang
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1224-1232
    • /
    • 2014
  • A full-bridge secondary dual-resonant DC-DC converter using the asymmetrical pulse-width modulated (APWM) strategy is proposed in this paper. The proposed converter achieves zero-voltage switching for the power switches and zero-current switching for the rectifier diodes in the whole load range without the help of any auxiliary circuit. Given the use of the APWM strategy, a circulating current that exists in a traditional phase-shift full-bridge converter is eliminated. The voltage stress of secondary rectifier diodes in the proposed converter is also clamped to the output voltage. Thus, the existing voltage oscillation of diodes in traditional PSFB converters is eliminated. This paper presents the circuit configuration of the proposed converter and analyzes its operating principle. Experimental results of a 1 kW 385 V/48 V prototype are presented to verify the analysis results of the proposed converter.

A Current Source using the 12-Pulse Phase-Controlled Rectifier (12-펼스 위상제어 정류기를 사용한 전류원)

  • 송의호;권봉환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.6
    • /
    • pp.545-556
    • /
    • 1990
  • A design method of a current source using 12-pulse phase-controlled rectifier (PCR) is presented. The critical inductance of the 12-pulse PCR is derived and it is shown that the critical inductance can be reduced using a current source. The control circuit of the 12-pulse PCR with an inner fast dynamic loop is proposed to give the frequency synchronism and to reduce the subharmonics due to the unbalance of the transformer of the power line. This circuit is analyzed and its dynamic loop is optimized. The optimal constant PIMF (proportional, integral and measurable variable feedback, and feedforware) controller is also designed using the time-weighted quadratic performance index. It is shown via experimental results that the proposed design method gives high dynamic and static performance of the current source using the 12-pulse PCR.