• Title/Summary/Keyword: Rectangular waveguide

Search Result 187, Processing Time 0.024 seconds

Generalized Scattering Matrix of Multi-port($2{\times}2$port, 1port) Rectangular Waveguide Using $TE^z_{mn}$ Mode Matching Method ($TE^z_{mn}$ 모드정합법을 이용한 다중포트($2{\times}2$포트, 1포트) 직사각형 도파관의 일반화 산란행렬 추출)

  • Lee, J.K.;Mun, S.Y.;Park, K.U.;Heo, Y.K.;Cho, Y.K.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.79-83
    • /
    • 2003
  • Multi-port($2{\times}2$port, 1port) rectangular waveguide discontinuity problem has been analyzed by use of $TE^x_{mn}$ (mono)mode matching method. Matrix size can be reduced significantly in comparison with $TE_{mn}&TM_{mn}$(full-wave)mode matching method. the present results is compared with those by CST MicroWave Studio to validate the presint method.

  • PDF

Enhanced-Gain Planar Substrate-Integrated Waveguide Cavity-Backed Slot Antenna with Rectangular Slot Window on Superstrate

  • Kang, Hyunseong;Lim, Sungjoon
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.1062-1065
    • /
    • 2014
  • A novel substrate-integrated waveguide (SIW) cavity-backed slot antenna is proposed in this study to achieve enhanced-gain performance. The peak gain is remarkably improved with the use of an SIW cavity and metallic superstrate. The superstrate comprises a single rectangular slot window and two half-wavelength patches. The gain can be enhanced by combining the in-phase radiating fields. Further, the 10 dB bandwidth of the proposed antenna ranges from 2.32 GHz to 2.49 GHz, which covers the wireless local area network band. The measured peak gain is 9.44 dBi at 2.42 GHz.

Transmission Characteristics on Swelling Tolerances of Rectangular Waveguides for Q-Band (Q-Band용 도파관의 내부 돌기가 전송 특성에 미치는 영향)

  • Park, Kyung-Sik;Cho, Byung-Ho;Kim, Ki-Chai;Kang, Jin-Seob;Kim, Jeong-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.108-113
    • /
    • 2014
  • This paper presents the influence on the transmission characteristics of swelling in rectangular waveguides for Q-band. We derived the Green's functions of the waveguide with eigenfunction expansion method. The reflection coefficient of the waveguide with a swelling is calculated by using internal impedance in order to investigate the influence of swelling in the waveguide. In order to check the validity of the theoretical analysis, the calculated reflection coefficients are compared with the measured results.

Transmission Characteristics on Dimensional Tolerances of Millimeter-Wave Rectangular Waveguides (밀리미터파용 구형 도파관의 단면 치수 변화에 의한 전송 특성)

  • Park, Kyung-Sik;Kim, Ki-Chai;Kang, Jin-Seob;Kim, Jeong-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.722-729
    • /
    • 2013
  • This paper presents the influence on the transmission characteristics of dimensional tolerances of rectangular waveguides usually used as a low-loss transmission line in the millimeter-wave band. We derived the Green's functions of the waveguide with eigenfunction expansion method. The reflection coefficient of the waveguide with a post is calculated by using internal impedance in order to investigate the influence of dimensional tolerances of the waveguide. In order to check the validity of the theoretical analysis, the calculated reflection coefficients are compared with the measured results.

Study on the Chirped Waveform of the USPR Pulse using the Impulse Response of a Waveguide

  • Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.20-26
    • /
    • 2010
  • In ultrashort-pulse reflectometry (USPR), a chirped waveform transformed from the USPR source impulse signal via waveguide makes it possible to employ millimeter-wave mixers for the frequency up-conversion process. Consequently, the frequency bandwidth of the USPR system is sufficiently wide to cover a large portion of the electron density profile of the plasma. Some physical aspects of the chirped waveform, such as maximum amplitude and length, are critical factors to determine the performance of the system. In this paper, the propagation of the USPR impulse signal through a rectangular waveguide is numerically studied to derive the chirped waveform using the impulse response of the waveguide. The results of numerical computation show that the chirped waveform significantly depends on the waveguide cutoff frequency as well as the waveguide length.

Complex Permittivity of Foam Materials at X-Band (X-대역에서의 Foam 재료의 복소 유전율)

  • 방재훈;안병철
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.72-75
    • /
    • 2000
  • This paper investigates the complex permittivity of foam materials using the rectangular waveguide. The transmission coefficients of materials inserted in the waveguide are measured with a network analyzer and calculated from the equivalent transmission line model. We use the trial and error method in the acquisition of the complex permittivity.

  • PDF

Dispersion Analysis of the Waveguide Structures by Using the Compact 2D ADI-FDTD (Compact 2D ADI-FDTD를 이용한 도파관 구조의 분산특성 연구)

  • 어수지;천정남;박현식;김형동
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.10
    • /
    • pp.38-45
    • /
    • 2002
  • This paper presents the new Compact 2D ADI-FDTD(Alternating-Direction Implicit Finite-Difference Time-Domain) method, where the time step is no longer restricted by the numerical stability condition. This method is an accelerating algorithm for the conventional Compact 2D FDTD method. To validate this algorithm, we have analyzed the dispersion characteristics of the hollow rectangular waveguide and the shielded microstrip line. The results of the proposed method are very well agreed with those of both the conventional analytic method and the Compact 2D FDTD method. The CPU time for analysis of this method is very much reduced compared with the conventional Compact 2D FDTD method. The proposed method is valuable as a fast algorithm in the research of dispersion characteristics of the waveguide structures.

Design of the Non-Resonant SWG Antenna with Double Slots in the Narrow Wall of Rectangular Waveguide (구형 도파관의 협벽에 이중 슬롯을 가진 비공진형 슬롯 도파관 안테나의 설계)

  • Hur, Moon-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.106-113
    • /
    • 2011
  • In this paper, the non-resonant SWG(Slotted Waveguide) antenna with double slots in narrow wall of rectangular waveguide is designed. Because energy radiated from each slot depends upon inclination angle of slot of the designed antenna, inclination angle of each slot is controlled to satisfy the amplitude distribution for required sidelobe level. Instead of the conventional extraction method of slot conductance, this amplitude distribution is made by the proposed method, which employs far-field radiation pattern calculated by Fourier transform of aperture field distribution on slot. The non-resonant double SWG antenna is designed by the proposed method and is manufactured. The antenna performances are measured and compared with the simulated results.

Haar-Wavelet-Based Compact 2D MRTD for the Efficient Dispersion Analysis of the Waveguide Structures (도파관 구조에서의 효율적인 분산특성 연구를 위한 Haar 웨이블릿 기반 Compact 2D MRTD)

  • 천정남;어수지;박현식;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1131-1138
    • /
    • 2001
  • This paper presents the new Compact 2D Haar-wavelet-based MultiResolution Time-Domain method (MRTD) as an accelerating algorithm for the conventional Compact BD Finite-Difference Time-Domain method (FDTD). To validate this algorithm, we analyzed the dispersion characteristics of the hollow rectangular waveguide and dielectric slab-loaded rectangular waveguide. The results of the proposed method are very weal agreed with those of both the conventional analytic method and the Compact 2D FDTD method. The CPU time for analysis of this method is reduced to about a half of the conventional Compact 2D FDTD method. The proposed method is valuable as a fast algorithm in the research of dispersion characteristics of waveguide structures.

  • PDF

Analysis on a Simple Waveguide Using Meshfree Method (무요소법을 이용한 waveguide 내의 필드 분포 해석)

  • Lee, Chany;Woo, Dong-Kyun;Jung, Hyun-Kyo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.190-192
    • /
    • 2008
  • This paper shows the formulation of fast moving least square reproducing kernel method (FMLSRKM) which is a kind of meshfree methods. FMLSRKM has some advantages compared to conventional numerical techniques such as finite element method. For simple analysis on a rectangular waveguide, point collocation scheme is introduced and applied.

  • PDF