• Title/Summary/Keyword: Rectangular section

Search Result 575, Processing Time 0.032 seconds

Tailoring the second mode of Euler-Bernoulli beams: an analytical approach

  • Sarkar, Korak;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.773-792
    • /
    • 2014
  • In this paper, we study the inverse mode shape problem for an Euler-Bernoulli beam, using an analytical approach. The mass and stiffness variations are determined for a beam, having various boundary conditions, which has a prescribed polynomial second mode shape with an internal node. It is found that physically feasible rectangular cross-section beams which satisfy the inverse problem exist for a variety of boundary conditions. The effect of the location of the internal node on the mass and stiffness variations and on the deflection of the beam is studied. The derived functions are used to verify the p-version finite element code, for the cantilever boundary condition. The paper also presents the bounds on the location of the internal node, for a valid mass and stiffness variation, for any given boundary condition. The derived property variations, corresponding to a given mode shape and boundary condition, also provides a simple closed-form solution for a class of non-uniform Euler-Bernoulli beams. These closed-form solutions can also be used to check optimization algorithms proposed for modal tailoring.

Experimental study on shear behavior of I-girder with concrete-filled tubular flange and corrugated web

  • Shao, Y.B.;Wang, Y.M.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1465-1486
    • /
    • 2016
  • Conventional plate I-girders are sensitive to local buckling of the web when they are subjected mainly to shear action because the slenderness of the web in out-of-plane direction is much bigger. The local buckling of the web can also cause the distorsion of the plate flange under compression as a thin-walled plate has very low torsional stiffness due to its open section. A new I-girder consisted of corrugated web, a concrete-filled rectangular tubular flange under compression and a plate flange under tension is presented to improve its resistance to local buckling of the web and distorsion of the flat plate flange under compression. Experimental tests on a conventional plate I-girder and a new presented I-girder are conducted to study the failure process and the failure mechanisms of the two specimens. Strain developments at some critical positions, load-lateral displacement curves, and load-deflection curves of the two specimens have all be measured and analyzed. Based on these results, the failure mechanisms of the two kinds of I-girders are discussed.

Effects of Replacement Ratio of Recycled Coarse Aggregate on the Shear Performance of Reinforced Concrete Beams without Shear Reinforcement

  • Yun, Hyun-Do;You, Young-Chan;Lee, Do-Heon
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.471-477
    • /
    • 2011
  • This paper will describe the experimental results on the shear behaviors of reinforced concrete (RC) beam with recycled coarse aggregate (RCA). The primary objective of this research is to evaluate the influences of different RCA replacement percentage (i.e, 0%, 30%, 60%, and 100%) on the shear performance of reinforced concrete beams without shear reinforcement. Eight large-scale RC beams without shear reinforcement were manufactured and tested to shear failure. All had a rectangular cross-section with 400mm width ${\times}$ 600mm depth and 6000mm length, and were tested with a shear span-to-depth of 5.1. The results showed that the deflection and shear strength were little affected by the different RCA replacement percentage. Actual shear strength of each RCA beam was compared with the shear strength predicted using the provisions of ACI 318 code and Zsutty'e equation for shear design of RC beams. ACI 318 code predicted the shear strength of RCA reinforced concrete beams well.

Finite Element Analysis of Externally Round Grooved Profile Ring Rolling Process (외부에 둥근 홈이 있는 형상환상압연공정의 유한요소해석)

  • 김광희;김병탁;석한길
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.631-639
    • /
    • 2003
  • Ring rolling process is simulated by using the general-purpose commercial finite element analysis software, MSC.Superform. Because the deforming region is restricted to the vicinity of the roll gap, only a ring segment spanning the roll gap is analyzed in order to save computation time and cost. First, a plain ring rolling of rectangular cross-section is simulated. Comparisons between computation and experiment show good agreement in the cross-sectional configuration of the deformed ring. Then, a profile ring with an external round groove is analyzed. The rolls with and without groove have been analyzed to compare the amount of side spread. It is found that the grooves in the rolls are effective in reducing the amount of side spread.

A New Model for Predicting Width Spread in a Roughing Mill - Part II: Application to Flat Rolling (조압연 공정의 판 폭 퍼짐 예측 모델 - Part II : 평판에의 적용)

  • Lee, D.H.;Lee, K.B.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.145-150
    • /
    • 2014
  • Precision control of the slab is crucial for product quality and production economy in hot strip mills. The current study presents a new model for predicting width spread of a slab with a rectangular cross section during roughing. The model is developed on the basis of the extremum principle for a rigid plastic material and a three dimensional admissible velocity field. This model incorporates the effect of process variables such as the shape factor and the ratio of width to thickness. We compare the results of this model to 3-D finite element (FE) process simulations and also to results from a previous study.

Tuning of Micromachined Gyroscope by the Axial Loads (축방향 하중을 이용한 마이크로 자이로스코프의 고유진동수 조율)

  • Cho, Choong-Hyoun;Park, Youn-Sik;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.88-91
    • /
    • 2005
  • Although the MEMS element is made through a very precise manufacturing process, usually there is the difference between the modeling design and the actual product. So tuning is required. Through the frequency tuning(changing the characteristics of device), we can calibrate the fabrication error and uncertainty. I'll propose the method of changing the natural frequency through the imposing the axial force on the anchor part to separate the sensing part and the tuning part. When the shape of section is the form of rectangular, the degree of the natural frequencies' change under axial force appears D be different. Applying a tuning force of 30 $\mu$N, the natural frequencies' difference can be reduced by 5 percent.

  • PDF

Strength assessment of RC deep beams and corbels

  • Adrija, D.;Geevar, Indu;Menon, Devdas;Prasad, Meher
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.273-291
    • /
    • 2021
  • The strut-and-tie method (STM) has been widely accepted and used as a rational approach for the design of disturbed regions ('D' regions) of reinforced concrete members such as in corbels and deep beams, where traditional flexure theory does not apply. This paper evaluates the applicability of the equilibrium based STM in strength predictions of deep beams (with rectangular and circular cross-section) and corbels using the available experiments in literature. STM is found to give fairly good results for corbel and deep beams. The failure modes of these deep members are also studied, and an optimum amount of distribution reinforcement is suggested to eliminate the premature diagonal splitting failure. A comparison with existing empirical and semi empirical methods also show that STM gives more reliable results. The nonlinear finite element analysis (NLFEA) of 50 deep beams and 20 corbels could capture the complete behaviour of deep members including crack pattern, failure load and failure load accurately.

Method And Mathematical Algorithm For Finding The Quasi-Optimal Purpose Plan

  • Piskunov, Stanislav;Yuriy, Rayisa;Shabelnyk, Tetiana;Kozyr, Anton;Bashynskyi, Kyrylo;Kovalev, Leonid;Piskunov, Mykola
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.88-92
    • /
    • 2021
  • A method and a mathematical algorithm for finding a quasi-optimal assignment plan with rectangular efficiency matrices are proposed. The developed algorithm can significantly reduce the time and computer memory consumption for its implementation in comparison with optimal methods.

Theoretical Study On Optimum Fin Design From Tube Bundles To Boiling Liquids (관군의 비등열전달에서 휜의 최적화에 관한 이론적 연구)

  • Jho Shi-Gie;Choi Kyung-Bin;Kang Yung-Kyu
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.3
    • /
    • pp.264-272
    • /
    • 1986
  • The performance of vertical and horizontal tubes with multiple fins of rectangular and triangular cross section was investigated theoretically for boiling heat transfer. A simple method for numerical program assuming one-dimensional heat flow was used to predict the performance of these finned tubes and their bundles. The object of the new study was to develop optimum fin design, especially in tube bundles, considering from a viewpoint to minimize the space in which the maximum heat flux density was expected.

  • PDF

Effect of Flow Liners on Ship′s Wake Simulation in a Cavitation Tunnel

  • Lee, Jin-Tae;Kim, Young-Gi
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.41-56
    • /
    • 1995
  • Flew control devices, such as flow liners, are frequently introduced in a cavitation tunnel in order to reduce the tunnel blockage effect, when a three-dimensional wake distribution is simulated using a complete ship model or a dummy model. In order to estimate the tunnel wall effect and to evaluate the effect of flow liners on the simulated wake distribution, a surface panel method is adopted for the calculation of the flow around a ship model and flow liners installed in a rectangular test section off cavitation tunnel. Calculation results on the Sydney Express ship model show that the tunnel wall effect on the hull surface pressure distribution is negligible for less than 5% blockage and can be appreciable for more than 20% blockage. The flow liners accelerate the flow near the afterbody of the ship model, so that the pressure gradient there becomes more favorable and accordingly the boundary layer thickness would be reduced. Since the resulting wake distribution is assumed to resemble the full scale wake, flow liners can also be used to simulate an estimated full scale wake without modifying the ship model. Boundary taper calculation should be incorporated in order to correlate the calculated wake distribution with the measured one.

  • PDF