• Title/Summary/Keyword: Rectangular grid

Search Result 141, Processing Time 0.029 seconds

A Numerical Solution. Method for Two-dimensional Nonlinear Water Waves on a Plane Beach of Constant Slope

  • Lee, Young-Gill;Heo, Jae-Kyung;Jeong, Kwang-Leol;Kim, Kang-Sin
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.61-69
    • /
    • 2004
  • Unsteady nonlinear wave motions on the free surface over a plane beach of constant slope are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier-Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Also, the free surface which consists of markers or segments is determined every time step with the satisfaction of kinematic and dynamic free surface conditions. Moreover, marker-density method is also adopted to allow plunging jets impinging on the free surface. The second-order Stokes wave theory is employed for the generation of waves on the inflow boundary. For the simulation of wave breaking phenomena, the computations are carried out with the plane beach of constant slope in surf zone. The results are compared with other existing experimental results. Agreement between the experimental data and the computation results is good.

Large Eddy Simulation for a 2-D hydrofoil using VIC(Vortex-In-Cell) method (VIC 방법을 사용한 2차원 날개의 LES 해석)

  • Kim, M.S.;Kim, Y.C.;Suh, J.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.407-413
    • /
    • 2011
  • VIC (Vortex-In-Cell) method for viscous incompressible flow is presented to simulate the wake behind a modified NACA16 foil. With uniform rectangular grid, the velocity in field is calculated using streamfunction from vorticity field by solving the Poisson equation in which FFT(Fast Fourier Transform) is combined with 2nd order finite difference scheme. Here, LES(Large Eddy Simulation) with Smagorinsky model is applied for turbulence calculation. Effective viscosity is formulated using magnitude of strain tensor(or vorticity). Then the turbulent diffusion as well as viscous diffusion becomes particle strength exchange(PSE) with averaged eddy viscosity. The well-established panel method is combined to obtain the irrotational velocity and to apply the no-penetration boundary condition on the body panel. And wall diffusion is used for no-slip condition numerical results of turbulent stresses are compared with experimental results (Bourgoyne, 2003). Before comparing process, LES(Large Eddy Simulation) SGS(Subgrid scale) stress is transformed Reynolds averaged stress (Winckelmans, 2001).

  • PDF

Modelling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Yoo, Hui-Ryong;Park, Yong-Woo;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.448-448
    • /
    • 2000
  • This paper deals with dynamic behaviour analysis for pipeline inspection gauge (PIG) flow control in natural gas pipeline. The dynamic behaviour of the PIG is depending on the different Pressure between the rear and nose parts, which is generated by injected gas flow behind PIG's tail and expelled gas flow in front of its nose. To analyze the dynamic behaviour characteristics such as gas flow in pipeline, and the PIG's position and velocity, mathematical model is derived as two types of a nonlinear hyperbolic partial differential equation for unsteady flow analysis of the PIG driving and expelled gas, and nonhomogeneous differential equation for dynamic analysis of PIG. The nonlinear equation is solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used when we solve the steady flow equations to get initial flow values and the dynamic equation of PIG. The gas upstream and downstream of PIG are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. The simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of PIG with different operational conditions of pipeline.

  • PDF

Modeling and Simulation for PIG with Bypass Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1302-1310
    • /
    • 2001
  • This paper introduces modeling and simulation results for pipeline inspection gauge (PIG) with bypass flow control in natural gas pipeline. The dynamic behaviour of the PIG depends on the different pressure across its body and the bypass flow through it. The system dynamics includes: dynamics of driving gas flow behind the PIG, dynamics of expelled gas in front of the PIG, dynamics of bypass flow, and dynamics of the PIG. The bypass flow across the PIG is treated as incompressible flow with the assumption of its Mach number smaller than 0.45. The governing nonlinear hyperbolic partial differential equations for unsteady gas flows are solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used for solving the steady flow equations to get initial flow values and the dynamic equation of the PIG. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. Simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of the PIG with bypass flow under given operational conditions of pipeline.

  • PDF

Variation Analysis of Elevation within a Rice Paddy Field (수도작 포장의 고저차 분석)

  • Sung J.H.;Jang S.W.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.3 s.116
    • /
    • pp.188-193
    • /
    • 2006
  • Elevation differences within a paddy field relate strongly to plant health, crop homogeneity, and pest control. For precision agriculture (PA), the elevation within a field should be precisely controlled. We analyzed variation in elevation within a rice paddy field over one crop cycle. The study took place in a rectangular plot (100 m x 30 m). Elevations within the a plots was measured by a laser-equipped surveying instrument, that could determine elevations to precisions of I mm. The test field was divided into grids with 30 squares; elevation was measured at the center of each 5 x 10-m grid square. This study measured elevation during nine observation periods from pre-plowing to post-harvest. Descriptive statistics showed the highest elevations after plowing due to soil disturbance. One-way analysis of variance (ANOVA) revealed significant elevation differences before and after plowing and transplanting, although elevations were similar over the period of crop growth. Comparison of pre-plowing and post-harvest data showed differences in elevations, indicating that elevation changes occurred during plowing, rice transplanting, plant growth, and harvesting. In summary, the above statistical analysis indicated that elevation changes occurred due to plowing but not during the plant growth season or due to harvesting.

A Fundamental Study for the Numerical Simulation Method of Green Water Occurrence on Bow Deck (선수부 갑판침입수의 수치시뮬레이션에 대한 기초연구)

  • Jeong, Kwang-Leol;Lee, Young-Gill;Kim, Nam-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.188-195
    • /
    • 2010
  • Green water load is an important parameter to be considered in designing a modern ship or offshore structures like FPSO and FSRU. In this research, a numerical simulation method for green water phenomenon is introduced. The Navier-Stokes equations and the continuity equation are used as governing equations. The equations are calculated using Finite Difference Method(FDM) in rectangular staggered grid system. To increase the numerical accuracy near the body, the Cartesian cut cell method is employed. The nonlinear free-surface during green water incident is defined by Marker-density method. The green waters on a box in regular waves are simulated. The simulation results are compared with other experimental and computational results for verification. To check the applicability to moving ship, the green water of the ship which is towed by uniform force in regular wave, is simulated. The ship is set free to heave and to surge.

Crack identification based on Kriging surrogate model

  • Gao, Hai-Yang;Guo, Xing-Lin;Hu, Xiao-Fei
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.25-41
    • /
    • 2012
  • Kriging surrogate model provides explicit functions to represent the relationships between the inputs and outputs of a linear or nonlinear system, which is a desirable advantage for response estimation and parameter identification in structural design and model updating problem. However, little research has been carried out in applying Kriging model to crack identification. In this work, a scheme for crack identification based on a Kriging surrogate model is proposed. A modified rectangular grid (MRG) is introduced to move some sample points lying on the boundary into the internal design region, which will provide more useful information for the construction of Kriging model. The initial Kriging model is then constructed by samples of varying crack parameters (locations and sizes) and their corresponding modal frequencies. For identifying crack parameters, a robust stochastic particle swarm optimization (SPSO) algorithm is used to find the global optimal solution beyond the constructed Kriging model. To improve the accuracy of surrogate model, the finite element (FE) analysis soft ANSYS is employed to deal with the re-meshing problem during surrogate model updating. Specially, a simple method for crack number identification is proposed by finding the maximum probability factor. Finally, numerical simulations and experimental research are performed to assess the effectiveness and noise immunity of this proposed scheme.

Application of Boundary-Fitted Coordinate System to the Wave Propation in a Circular Channel (만곡 수로에서의 파랑 전파 예측을 위한 경계 고정 좌표계의 적용)

  • Jung Lyul Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.3
    • /
    • pp.125-131
    • /
    • 1998
  • The paper deals with the application of Boundary-Fitted Coordinate System (BFCS) to the two wave models of parabolic and hyperbolic types developed on a rectangular grid system. Since the BFCS conforms the boundaries of the region in such wary that boundary conditions or calculation process can be accurately represented, improvement in predicting the wave fields can be achieved. The numerical results show a good agreement with the analytical results for either waves propagating or reflecting along a circular channel of constant depth. Simulation of reflecting waves in a parabolic wave model is accomplished by the backward calculation as if waves approached at the cross wall take a turn in the opposite direction and propagate against a channel.

  • PDF

An Implicit Numerical Method for Two-Dimensional Tidal Computation (음해법에 의한 2차원 조류유동 계산법)

  • Sun-Young Kim;Mu-Seok Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • A two-dimensional numerical model for tidal currents based on the depth averaged equation is developed. The mode1 employs a rectangular grid system for its simplicity in the application of complicate coastal shore lines. To raise computing efficiency, implicit approximate factorization scheme is implemented in solving governing equations. An upwind-differencing is used to discretize convective terms, which provides a numerical dissipation automatically and suppresses any oscillations caused by nonlinear instabilities. Some numerical tests are made against the analytic solutions of a linearized shallow water equation to validate the developed numerical scheme, and comparisons of the model prediction with the analytic solution are satisfactory. As a real application, the tidal currents are computed on the Inchon area where the tidal currents are important for the design of new canal which is under construction.

  • PDF

Development of a Meso-Scale Distributed Continuous Hydrologic Model and Application for Climate Change Impact Assessment to Han River Basin (분포형 광역 수문모델 개발 및 한강유역 미래 기후변화 수문영향평가)

  • Kim, Seong-Joon;Park, Geun-Ae;Lee, Yong-Gwan;Ahn, So-Ra
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.160-174
    • /
    • 2014
  • The purpose of this paper is to develop a meso-scale grid-based continuous hydrological model and apply to assess the future watershed hydrology by climate change. The model divides the watershed into rectangular cells, and the cell profile is divided into three layered flow components: a surface layer, a subsurface unsaturated layer, and a saturated layer. Soil water balance is calculated for each grid cell of the watershed, and updated daily time step. Evapotranspiration(ET) is calculated by Penman-Monteith method and the surface and subsurface flow adopts lag coefficients for multiple days contribution and recession curve slope for stream discharge. The model was calibrated and verified using 9 years(2001-2009) dam inflow data of two watersheds(Chungju Dam and Soyanggang Dam) with 1km spatial resolution. The average Nash-Sutcliffe model efficiency was 0.57 and 0.71, and the average determination coefficient was 0.65 and 0.72 respectively. For the whole Han river basin, the model was applied to assess the future climate change impact on the river bsain. Five IPCC SRES A1B scenarios of CSIRO MK3, GFDL CM2_1, CONS ECHO-G, MRI CGCM2_3_2, UKMO HADGEMI) showed the results of 7.0%~27.1 increase of runoff and the increase of evapotranspiration with both integrated and distributed model outputs.