• Title/Summary/Keyword: Recrystallization Texture

Search Result 92, Processing Time 0.015 seconds

Shock Metamorphism of Plagioclase-maskelynite in the Lunar Meteorite Mount DeWitt 12007 (달운석 Mount DeWitt 12007의 마스컬리나이트 충격 변성 특성 연구)

  • Kim, Hyun Na;Park, Changkun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.131-139
    • /
    • 2016
  • Detailed knowledge on maskelynite, a glassy phase of plagioclase found in shocked meteorites and impact craters, is essential to understand a shock metamorphism. Here, we explore an inhomogeneous shock metamorphism in the lunar meteorite Mount DeWitt (DEW) 12007 with an aim to understand the formation mechanism of maskelynite. Most plagioclase grains in the DEW 12007 partially amorphized into maskelynite with a unidirectional orientation. Back-scattered electron (BSE) images of maskelynite show a remnant of planar deformation fracture possibly indicating that the maskelynite would be formed by solid-state transformation(i.e., diaplectic glass). Plagioclase with flow texture is also observed along the rim of maskelynite, which would be a result of recrystallization of melted plagioclase. Results of Raman experiments suggest that shock pressure for plagioclase and maskelynite in the DEW 12007 is approximately 5-32 GPa and 26-45 GPa, respectively. The difference in shock pressures between plagioclase and maskelynite can be originated from 1) external factors such as inhomogeneous shock pressure and/or 2) internal factors such as chemical composition and porosity of rock. Unfortunately, Raman spectroscopy has a limitation in revealing the detailed atomic structure of maskelynite such as development of six- or five-coordinated aluminum atom upon various shock pressure. Further studies using nuclear magnetic resonance spectroscopy are necessary to understand the formation mechanism of maskelynite under high pressure.

Textural and Genetic Implications of Type II Xenoliths Enclosed in Basaltic Rocks from Jeju Island (제주도 현무암에 포획된 Type II 포획암: 성인과 조직적 특성)

  • Yu, Jae-Eun;Yang, Kyoung-Hee;Hwang, Byoung-Hoon;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.223-236
    • /
    • 2009
  • Ultramafic xenoliths from southeastern part of Jeju Island can be grouped into two types: Type I and Type II. Type I xenoliths are magnesian and olivine-rich peridotite (mg#=89-91), which are commonly found at the outcrop. Most previous works have been focused on Type I xenoliths. Type II xenoliths, consisting of olivine, orthopyroxene and clinopyroxene with higher Fe and Ti components (mg#=77-83) and lower Mg, Ni, Cr, are reported in this study. They are less common with a more extensive compositional range. The studied Type II xenoliths are wehrlite, olivine-clinopyroxenite, olivine websterite, and websterite. They sometimes show ophitic textures in outcrops indicating cumulate natures. The textural characteristics, such as kink banding and more straight grain boundaries with triple junctions, are interpreted as the result of recrystallization and annealing. Large pyroxene grains have exsolution textures and show almost the same major compositions as small exsolution-free pyroxenes. Although the exsolution texture indicates a previous high-temperature history, all mineral phases are completely reequilibrated to some lower temperature. Orthopyroxenes replacing clinopyroxene margin or olivine indicate an orthopyroxene enrichment event. Mineral phases of Type II are compared with Type I xenoliths, gabbroic xenoliths, and the host basalts. Those from Type II xenoliths show a distinct discontinuity with those from Type I mantle xenoliths, whereas they show a continuous or overlapping relation with those from gabbroic xenoliths and the host basalts. Our petrographic and geochemical results suggest that the studied type II xenoliths appear to be cumulates derived from the host magma-related system, being formed by early fractional crystallization, although these xenoliths may not be directly linked to the host basalt.