Browse > Article

Textural and Genetic Implications of Type II Xenoliths Enclosed in Basaltic Rocks from Jeju Island  

Yu, Jae-Eun (Division of Earth Environmental System, Pusan National University)
Yang, Kyoung-Hee (Division of Earth Environmental System, Pusan National University)
Hwang, Byoung-Hoon (Division of Earth Environmental System, Pusan National University)
Kim, Jin-Seop (Division of Earth Environmental System, Pusan National University)
Publication Information
The Journal of the Petrological Society of Korea / v.18, no.3, 2009 , pp. 223-236 More about this Journal
Abstract
Ultramafic xenoliths from southeastern part of Jeju Island can be grouped into two types: Type I and Type II. Type I xenoliths are magnesian and olivine-rich peridotite (mg#=89-91), which are commonly found at the outcrop. Most previous works have been focused on Type I xenoliths. Type II xenoliths, consisting of olivine, orthopyroxene and clinopyroxene with higher Fe and Ti components (mg#=77-83) and lower Mg, Ni, Cr, are reported in this study. They are less common with a more extensive compositional range. The studied Type II xenoliths are wehrlite, olivine-clinopyroxenite, olivine websterite, and websterite. They sometimes show ophitic textures in outcrops indicating cumulate natures. The textural characteristics, such as kink banding and more straight grain boundaries with triple junctions, are interpreted as the result of recrystallization and annealing. Large pyroxene grains have exsolution textures and show almost the same major compositions as small exsolution-free pyroxenes. Although the exsolution texture indicates a previous high-temperature history, all mineral phases are completely reequilibrated to some lower temperature. Orthopyroxenes replacing clinopyroxene margin or olivine indicate an orthopyroxene enrichment event. Mineral phases of Type II are compared with Type I xenoliths, gabbroic xenoliths, and the host basalts. Those from Type II xenoliths show a distinct discontinuity with those from Type I mantle xenoliths, whereas they show a continuous or overlapping relation with those from gabbroic xenoliths and the host basalts. Our petrographic and geochemical results suggest that the studied type II xenoliths appear to be cumulates derived from the host magma-related system, being formed by early fractional crystallization, although these xenoliths may not be directly linked to the host basalt.
Keywords
Jeju Island; Type II ultramafic xenoliths; cumulate; enrichment; chemical re-equilibration;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 고기원, 박윤석, 박언배, 2004, 제주도 동부지역의 지하 지질분포와 $^{40}$Ar_$^{39}$Ar 연대. 2004 대한지질학회 춘계학술답사, 대한지질학회, 29-50
2 박준범, 박기화, 조등룡, 고기원, 1999, 제주도 제 4기 화산암류의 암석화학적 분류. 지질학회지, 35, 253-264
3 윤성효, 고정선, 안지영, 1998, 제주도 동부 알칼리 현무암내 스피넬-레졸라이트 포획체의 연구, 자원환경지질학회지, 31, 447-458
4 윤성효, 고정선, 박정미, 2002, 제주도 남동부 태흥리 용암에 대한 암석학적 연구. 암석학회지, 11, 17-29   ScienceOn
5 Allegre, C J. and Turcotte, D.L., 1986, Implications of a two-component marble-cake mantle. Nature, 323, 123-127   DOI   ScienceOn
6 Mukasa, S.B. and Shervais, J.W, 1999, Growth of subcontinental lithosphere: evidence from repeated dike injections in the Balmuccia lherzolite massif, Italian Alps. Lithos, 48
7 Passchier, C.W and Trouw, R.A.J., 1996, Microtectonics. Springer-Verlag, Berlin, 289p
8 Zoltan, Z., Kovacs, I., Szabo, e., Halter, W and Pettke, T., 2007, Evolution of Mafic Alkaline Melts Crystallized in the Uppermost Lithospheric Mantle: a Melt Inclusion Study of Olivine-Clinopyroxenite Xenoliths, Northern Hungary. Journal of Petrology, 48, 853-883   DOI
9 박기화, 2004, 제주도 형성사, 2004 대한지질학회 춘계학술답사, 대한지질학회, 1
10 양경희, 남복현, 김진섭, Szab, C., 2009, 제주도 현무암에 포획된 세립질 맨틀 페리도타이트 포획암의 조직적 특성. 광물학회지, 22, 1-11   ScienceOn
11 Hamdy, A.M., Park P.H., Lim H.C. and Park K.D., 2004, Present-day relative displacements between the Jeju Island and the Korean peninsula as seen from GPS observations. Earth Planets Space, 56, 927-931   DOI   ScienceOn
12 Wilson, M., 1989, Igneous petrogenesis. Unwin Hyman, London, 466p
13 Xu, X, Oreilly, S.Y, Griffm, W.L., Zhou, X. and Huang, X, 1998, The nature of the Cenozoic lithosphere at Nushan, Eastern China. In Flower M.F.J., Chung S.L., Lo, C.H. and Lee T.Y(eds.), Mantle dynamics and plate interactions in east Asia, Geodynamics Series, 27, 167-95
14 Tatsumi Y, Shukuno H., Yoshikawa M., Chang Q., Sato K. and Lee M.W, 2005, The petrology and geochemistry of volcanic rocks on Jeju Island: Plume magmatism along the Asian continental margin. Journal of Petrology, 46, 523-553   DOI   ScienceOn
15 Chen, S., O'Reilly, S.Y., Zhou, x., William, L.G., Zhang, G., Sun, M. and Feng, J., Zhang, M., 2001, Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean craton, China: evidence from xenoliths Lithos, 56, 267-301   DOI   ScienceOn
16 Frey, FA and Prinz, M., 1978, Ultramafic inclusions from San Carlos, Arizona; petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters 38, 129-178   DOI   ScienceOn
17 McBirney R.B., 1993, Igneous petrology (2nd ed), Jones and Bartlett, 508p
18 Sachs, P.M. and Hansteen, H.T., 2000, Pleistocene underplating and metasomatism of the lowercontinental crust: a xenolith study. J. Petrol., 41, 331-356   DOI   ScienceOn
19 Winter, J.D., 2001, Igneous and metamorphic petrology. Prentice Hall, New Jersey, 697p
20 Hidas, K., Falus, G, Szabo, C., Szabo, P.J., Kovacs, I. and Foldes, T., 2007, Geodynamic implications of flattened tabular equigranular textured peridotites from the BakonyBalaton Highland Volcanic Field (Western Hungary). Journal of Geodynamics, 43, 484-503   DOI   ScienceOn
21 Vauchez, A. and Garrido, C.J., 2001, Seismic properties of an asthenospherized lithospheric mantle: constraints from lattice preferred orientations in peridotite from the Ronda massif. Earth Planet. Sci. Lett., 192, 235-249   DOI   ScienceOn
22 진명식, 2004, 한국의 화성활동. 한국암석학회 추계학술심포지엄 논문집, 한국의 화성활동, 한국암석학회, 103-104
23 Lee, S.R and Walker, R.J., 2006, Re-Os isotope systematics of mantle xenoliths from South Korea: Evidence for complex growth and loss of lithospheric mantle beneath East Asia. Chem. Geol., 231, 90-101   DOI   ScienceOn
24 남복현, 양경희, 엄영보, Karoly Hidas, Csaba Szabo, 2007, 제주도 현무암과 맨틀포획암에 산출되는 함수광물의 중요성, 2007 한국광물학회. 한국암석학회 공동학술발표회 논문집, 176-179
25 이문원, 원종관, 이동영, 박계현, 김문섭, 1994, 제주도 화산암류의 화산층서 및 암석학적 연구. 지질학회지, 30, 521-541
26 박준범, 권성택, 1996, 제주도의 솔리아이트 화산활동. 암석학회지, 5, 66-83   ScienceOn
27 Choi, S.H., Lee, J.l., Park, CH. and Moutte, J., 2002, Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, Korea, The Island Arc, 11, 221-235   DOI   ScienceOn
28 Mercier, J.C.C. and Nicolas, A, 1975, Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths form basalts. Journal of Petrology, 16, 454-487   DOI
29 엄영보, 양경희, 남복현, 황병훈, 김진섭, 2007, 제주도 알칼리 현무암에 포획된 반려암질 포획암, 광물학회지, 20, 103-114   ScienceOn
30 Lloyd, G.E., Farmer, A.B. and Mainprice, D., 1997, Misorientation analysis and orientation of subgrain and grain boundaries. Tectonophysics, 279, 55-78   DOI   ScienceOn
31 Irving, A.J., 1974, Megacrysts from the newer basalts and other basaltic rocks of southeastern Australia. Geol. Soc. Am. Bull., 85, 1503-1514   DOI
32 Kim, K.H., Nagao, K., Suzuki, K., Tanaka, T. and Park, E.J., 2003, Evidences of the presence of old continental basement in Jeju volcanic Island, South Korea, revealed by Radiometric ages and Nd-Sr isotopes of granitic rocks. Journal of Geochemical Exploration, 36, 421-441
33 황재하, 송교영, 2003, 제주도의 지구조운동, 제1회 학술심포지엄, 제주화산연구소 개소기념, 제주화산연구소, 1-6
34 Hidas, K., Falus, G, Szabo, C, Szabo, PJ., Kovacs, I. and Foldes, T., 2007, Geodynamic implications of flattened tabular equigranular textured peridotites from the BakonyBalaton Highland Volcanic Field (Western Hungary). Journal of Geodynamics, 43, 484-503   DOI   ScienceOn
35 Lee, M.W, 1982, Petrology and geochemistry of Jeju volcanic island, Korea. The Science Report of the Tohoku Imperial University Section SeriesIII, 15, 177-256
36 Yang K., 2004, Fluid and meIt inclusions trapped in xenoliths from the lower crust/upper mantle beneath Jeju Island (I): A preliminary study. Petorlogical Society of Korea, 13, 34-45
37 Kovacs, I., Zajacz, Z. and Szabo, C., 2004, Type-II xenoliths and metasomatism beneath the Nograd-Gomor volcanic field, Carpathian-Pannonian region (northern Hungarysouthern Slovakia). Tectonophysics, 393. 139-161   DOI   ScienceOn
38 Xu, Y.G, Menzies, M.A, Matthew, F., Huang, X.L., Liu, Y and Chen, X.M., 2003, 'Reactive' harzburgites from Huinan, NE China: Products of the lithosphere-asthenosphere interaction during lithospheric thinning? Geochimica et Cosmochirmca Acta, 67, 487-505   DOI   ScienceOn