• Title/Summary/Keyword: Recovery angle

Search Result 278, Processing Time 0.03 seconds

Mechanical Properties and Fabric Handle of kansan Bamie (Part I) (한산 모시의 역학적 특성 및 태에 관한 연구(제1보))

  • 홍지명;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.8
    • /
    • pp.1315-1322
    • /
    • 1997
  • Ramie is one of the traditional fabrics in Korea, and very comfortable fabric for summer clothes because it has a high moisture-absorbing and transporting property. Futhermore ramie is very popular and Koreans prefer its handle for summer clothes. The kansan ramie has better quality as fibers and can be weaved as fine fabrics which are famous as kansan Fine ramie. Even though the good quality of kansan ramie has known widely, very few research work have been carried out on kansan ramie in the field of textile science. In this study, the analysis of the physical and chemical characteristics of Hansan ramie was conducted by using two different kinds of Hansan ramie: Hansan Fine ramie and kansan Coarse ramie. In addition, the same experiment was held on the one kind of chinese ramie to be compared with those of Hansan ramie. The following results were obtained from this experimental study. By the analysis of chemical composition of ramie, the similar chemical composition (a -cellulose: 83∼85%, pectin substances: 2.81∼ 3.01%) were found from all of the ramie fabrics used in this study. It has shown that Hansan coarse ramie has the highest toughness value and wrinkle recovery angle among the samples used in this study. From the result of KES-F system, it was found that Hansan Coarse ramie which is composed with the thicker yarns has the highest value on the bending properties, 2HG and surface properties. The primary hand value was also calculated by KN-203 LDY and value of Koshi was shown as the order of kansan coarse ramie> Chinese ramie> kansan fine ramie, and Hansan fine ramie had shown the highest Numeri and Fukurami value among the 3 samples used in this study.

  • PDF

Surface Modification of PDMS for Hydrophilic and Antifouling Surface Using PEO-PPO-PEO Block Copolymer (PEO-PPO-PEO 블록 공중합체를 이용한 PDMS의 친수성 표면 개질 방법)

  • Lee, Byungjin;Jin, Si Hyung;Jeong, Seong-Geun;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.791-797
    • /
    • 2017
  • In this study, we optimized a method of PEO-PPO-PEO block copolymer embedding, for solving non-specific protein and biomolecular adsorption and high hydrophobicic surface property, which is widely known as problems of poly (dimethylsiloxane) (PDMS) that has frequently been used in basic biological and its applied research. We assessed its surface modification by controlling the concentration of embedded block copolymer, water-soaking time, and recovery time as variables by contact angle measurements. In order to evaluate its antifouling ability, adsorption of FITC-BSA molecules was quantified. Furthermore, we generated oil-in-water (O/W) emulsion as a proof-of-concept experiment to confirm that the optimized surface modification works properly.

A Comparison of EMG Activity for the Middle and Lower Trapezius Muscle in the Frontal and Scapular Plane According to Shoulder Abduction Angles (어깨관절의 이마면과 어깨면에서 벌림각도에 따른 중간 등세모근과 아래 등세모근의 근 활성도 비교)

  • Kim, Byung-Kon;Lee, Myoung-Hee
    • PNF and Movement
    • /
    • v.14 no.2
    • /
    • pp.131-137
    • /
    • 2016
  • Purpose: The purpose of this study was to compare muscle activities in the frontal plane and scapular plane of the middle fiber and lower fiber of the trapezius muscle at different shoulder abduction angles. Methods: Twenty male and female students in their 20s participated in this study. Each subject maintained shoulder abduction at $75^{\circ}$, $90^{\circ}$, $125^{\circ}$, and $160^{\circ}$ in a standing position and repeated motions three times each in the frontal plane and the scapular plane. While maintaining the motions for 10 seconds in each posture, surface electromyography (EMG) was used to measure muscle activity of the middle fiber and lower fiber of the trapezius muscle. The collected EMG data were normalized using maximal voluntary isometric contraction (MVIC). Differences in muscle activity of the middle fiber and lower fiber of the trapezius muscles according to the angles at each plane were statistically processed using repeated measured analysis of variance, and an independent t-test was used to examine the differences between the two planes at each angle. Results: Muscle activity of the middle and lower trapezius during shoulder abduction in the frontal plane and scapular plane significantly increased as the angles increased (p<.05). However, muscle activity of the middle trapezius was significantly lower in the scapular plane than in the frontal plane for all shoulder abduction angles (p<.05). Conclusion: The results of this study suggest that during shoulder abduction, angles should be different according to the goals, and for training during an acute phase or early phase for functional recovery, it is more efficient to perform the training in the scapular plane than in the frontal plane.

Numerical and Experimental Study of U-Bending of SUS304L Heat Transfer Tubes (SUS304L 튜브의 U-Bending 성형공정에 관한 해석적·실험적 연구)

  • Kim, Y.B.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.23 no.7
    • /
    • pp.405-412
    • /
    • 2014
  • As a major type of heat exchanger, the steam generator (SG) produces steam from heat energy of a nuclear power plant reactor. The steam produced by the steam generator flows into a turbine, and plays an important role in electric power generation. The heat transfer tubes in the steam generator consist of approximately 10,000 U-shaped tubes, which perform a structural role and act as thermal boundaries. The heat transfer tubes conduct the thermal energy between the primary coolant (about $320^{\circ}C$, $157kgf/cm^2$) obtained from the reactor and the secondary coolant (about $260^{\circ}C$, $60kgf/cm^2$) as part of the secondary system. Recently, the heat transfer tubes in the steam generator of the pressurized water reactor (PWR) are primarily produced from Alloy 600 and Alloy 690 seamless tubes. As a pilot study to find process parameters for the cold U-bending process using rotary draw bending, numerical and experimental investigations were conducted to produce U-shaped tubes from long straight SUS304L seamless tubes. 3D finite element simulations were run using ABAQUS Explicit with consideration of the elastic recovery. The process parameters studied were the angular speed, the operation period and the bending angle. Experimental verifications were conducted to insure the suitability of the final U-shaped configurations with respect to both ovality and wall thickness.

Sports Biomechanical Analysis before and after Applying Weight Belt during Squat Exercise (스쿼트 동작 시 웨이트 벨트 착용 전·후에 따른 운동역학적 분석)

  • LEE, Jeong-Ki;HEO, Bo-Seob;KIM, Yong-Jae;LEE, Hyo-Taek
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.893-902
    • /
    • 2016
  • The purpose of this study is to investigate the effect of wearing a weightlifting belt, which is an auxiliary equipment used during squat, by measuring and analyzing biomechanical difference in lower limb and proposing safer and to suggest a more effective exercise method for general population. Selected 8 male participants in their 20s who have not performed regular resistance exercise for at least a year, but have experience of performing squat. The comprehensive method of study is as follows: subjects were notified of the purpose of the study and were told to practice warm-up and the squat motion for the experiment for 20 minutes. When the participant believed they were ready to begin, the experiment was started. At controlled points, foot pressure distribution sensor has been installed. Then left and right feet have been placed on the pressure distribution sensor, from which data for successful squat position that does not satisfy the criteria for failure have been collected and computed with Kwon3D XP program and TPScan program. For data processing of this study, SPSS 21.0 was used to calculated mean (M) and standard deviation (SD) of the analyzed values, and paired t-test has been conducted to investigate the difference before and after wearing the weightlifting belt, with p-value of ${\alpha}<.05$. As for time consumed depending on usage of weightlifting belt in squat, statistically significant difference has been found in P2, which is recovery movement. Lower limb angle depending on usage of weightlifting belt in squat has shown statistically significant difference in E1 foot joint(p<. 001). There has been statistically significant difference in E2 knee joint. Foot pressure percentage depending on usage of weightlifting belt in squat were found to be statistically significant (p<. 01) in both regions of anterior and posterior foot.

Comparison study of the effect of blending method on PVDF/PPTA blend membrane structure and performance

  • Li, Hongbin;Shi, Wenying;Zhang, Yufeng;Zhou, Rong
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.205-224
    • /
    • 2015
  • A novel hydrophilic poly (vinylidene fluoride)/poly (p-phenylene terephthalamide) (PVDF/PPTA) blend membrane was prepared by in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution with subsequent nonsolvent induced phase separation (NIPS) process. For comparison, conventional solution blend membrane was prepared directly by adding PVDF powder into PPTA polycondensation solution. Blend membranes were characterized by means of viscometry, X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM). The effects of different blending methods on membrane performance including water contact angle (WCA), mechanical strength, anti-fouling and anti-compression properties were investigated and compared. Stronger interactions between PVDF and PPTA in in situ blend membranes were verified by viscosity and XPS analysis. The incorporation of PPTA accelerated the demixing rate and caused the formation of a more porous structure in blend membranes. In situ blend membranes exhibited better hydrophilicity and higher tensile strength. The optimal values of WCA and tensile strength were $65^{\circ}$ and 34.1 MPa, which were reduced by 26.1% and increased by 26.3% compared with pure PVDF membrane. Additionally, antifouling properties of in situ blend membranes were greatly improved than pure PVDF membrane with an increasing of flux recovery ratio by 25%. Excellent anti-compression properties were obtained in in situ blend membranes with a stable pore morphology. The correlations among membrane formation mechanism, structure and performance were also discussed.

Analysis of Dual Combustion Ramjet Using Quasi 1D Model (준 1차원 모델을 적용한 이중연소 램제트 해석)

  • Choi, Jong Ho;Park, Ik Soo;Gil, Hyun Young;Hwang, Ki Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.81-88
    • /
    • 2013
  • The component based propulsion modeling and simulation of an dual ramjet engine using Taylor-Maccoll flow equation and quasi 1-D combustor model. The subsonic and supersonic intake were modeled with Taylor-Maccoll flow having $25^{\circ}$ cone angle, the gas generator which transfers a pre-combustion gas into supersonic combustor was developed using Lumped model, and the determination of the size of nozzle throat of a gas generator was described. A quasi 1-D model was applied to model a supersonic combustor and the variation of temperature and pressure inside combustor were presented. Furthermore, the thrust and specific impulse applying fuel regulation by pressure recovery ratio and equivalence ratio were derived.

Development of Drug Eluting Stent for the Treatment of Benign Biliary Stricture by Electro-spray Method (전기분사를 이용한 양성담관 협착 치료용 약물방출 스텐트 개발)

  • Shin, Il-Gyun;Kim, Dong-Gon;Kim, Han-Ki;Kim, Sang-Ho;Jeon, Dong-Min;Suh, Tae-Seok;Jang, Hong-Seok
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.163-168
    • /
    • 2012
  • Recently, along with technology development of endoscopic equipment, the stent technology has been developed for the convenience of operation, shortening of recovery times, and reduction of patient's pain. In this study, paclitaxel-eluting metal stents for treatment of biliary benign stenosis were developed through an electrospray-coating method. Polyether-based polyurethane (PELLETHANE 2363-80AE$^{(R)}$)) and paclitaxel were coated onto the surface of a metallic stent and Pluronic F127 was used as an additive. As a result, physicochemical characterization of paclitaxel via SEM, FTIR, contact angle and XRD techniques revealed the information of solid state of paclitaxel-loaded PU film. The in vitro release profile showed a slower release rate with a higher content of paclitaxel.

An Experimental Study of the Effect of the Test-well Arrangement on the Partitioning Interwell Tracer Test for the Estimation of the NAPL Saturation (지하수 유동 방향에 대한 관정배열이 분배추적자 시험에 미치는 영향 분석)

  • Kim, Bo-A;Kim, Yongcheol;Yeo, In Wook;Ko, Kyung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.111-122
    • /
    • 2014
  • Partitioning interwell tracer test (PITT) is a method to quantify and qualify a site contaminated with NAPLs (Non-Aqueous Phase Liquids). Analytical description of PITT assumes that the injection-pumping well pair is on the line of the ambient groundwater flow direction, but the test-well pair could frequently be off the line in a real field site, which could be an erroneous factor in analyzing PITT data. The purpose of this work is to study the influence of the angle of the test-well pair on the ambient groundwater flow direction based on the result from PITT. From the experiments, it was found that the obliqueness of the test-well pair to the ambient groundwater flow direction could affect the tracer test resulting in a decreased NAPL estimation efficiency. In case of an oblique arrangement of the test-well pair to the ambient flow direction, it was found that the injection of a chase fluid could enhance the estimation efficiency. An increase of the pumping rate could enhance the recovery rate but it cannot be said that a high pumping rate can increase the test efficiency because a high pumping rate cannot give partitioning tracers enough time to partition into NAPLs. The results have a implication that because the arrangement of the test-well pair is a controlling factor in performing and interpreting PITT in the field in addition to the known factors such as heterogeneity and the source zone architecture, flow direction should be seriously considered in arranging test-well pair.

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.