• Title/Summary/Keyword: Recommender System

Search Result 440, Processing Time 0.022 seconds

A Group Modeling Strategy Considering Deviation of the User's Preference in Group Recommendation (그룹 추천에서 사용자 선호도의 편차를 고려한 그룹 모델링 전략)

  • Kim, HyungJin;Seo, Young-Duk;Baik, Doo-Kwon
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1144-1153
    • /
    • 2016
  • Group recommendation analyzes the characteristics and tendency of a group rather than an individual and provides relevant information for the members of the group. Existing group recommendation methods merely consider the average and frequency of a preference. However, if the users' preferences have large deviations, it is difficult to provide satisfactory results for all users in the group, although the average and frequency values are high. To solve these problems, we propose a method that considers not only the average of a preference but also the deviation. The proposed method provides recommendations with high average values and low deviations for the preference, so it reflects the tendency of all group members better than existing group recommendation methods. Through a comparative experiment, we prove that the proposed method has better performance than existing methods, and verify that it has high performance in groups with a large number of members as well as in small groups.

Method to Improve Data Sparsity Problem of Collaborative Filtering Using Latent Attribute Preference (잠재적 속성 선호도를 이용한 협업 필터링의 데이터 희소성 문제 개선 방법)

  • Kwon, Hyeong-Joon;Hong, Kwang-Seok
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.59-67
    • /
    • 2013
  • In this paper, we propose the LAR_CF, latent attribute rating-based collaborative filtering, that is robust to data sparsity problem which is one of traditional problems caused of decreasing rating prediction accuracy. As compared with that existing collaborative filtering method uses a preference rating rated by users as feature vector to calculate similarity between objects, the proposed method improves data sparsity problem using unique attributes of two target objects with existing explicit preference. We consider MovieLens 100k dataset and its item attributes to evaluate the LAR_CF. As a result of artificial data sparsity and full-rating experiments, we confirmed that rating prediction accuracy can be improved rating prediction accuracy in data sparsity condition by the LAR_CF.

A Customer Profile Model for Collaborative Recommendation in e-Commerce (전자상거래에서의 협업 추천을 위한 고객 프로필 모델)

  • Lee, Seok-Kee;Jo, Hyeon;Chun, Sung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.67-74
    • /
    • 2011
  • Collaborative recommendation is one of the most widely used methods of automated product recommendation in e-Commerce. For analyzing the customer's preference, traditional explicit ratings are less desirable than implicit ratings because it may impose an additional burden to the customers of e-commerce companies which deals with a number of products. Cardinal scales generally used for representing the preference intensity also ineffective owing to its increasing estimation errors. In this paper, we propose a new way of constructing the ordinal scale-based customer profile for collaborative recommendation. A Web usage mining technique and lexicographic consensus are employed. An experiment shows that the proposed method performs better than existing CF methodologies.

A Similarity Measure Using Rating Ranges for Memory-based Collaborative Filtering (메모리 기반 협력필터링을 위한 평가 등급 범위를 이용한 유사도 척도)

  • Lee, Soojung
    • Journal of The Korean Association of Information Education
    • /
    • v.17 no.4
    • /
    • pp.375-382
    • /
    • 2013
  • Collaborative filtering has been most widely used in commercial sites to recommend items based on the history of user preferences for items. The basic idea behind this method is to find similar users whose ratings for items are incorporated to make recommendations for new items. Hence, similarity calculation is most critical in recommendation performance. This paper presents a new similarity measure that takes each rating of a user relatively to his own ratings. Extensive experiments revealed that the proposed measure is more reliable than the classic measures in that it significantly decreases generation of extreme similarity values and its performance improves when consulting neighbors with high similarites only. In particular, the results show that the proposed measure is superior to the classic ones for datasets with large rating scales.

A Comparison on the Factors Influencing Customer Values in Electronic Commerce between Korea and China (전자상거래 고객가치 요인의 한·중 비교)

  • Lee, Hyun-Kyu;Han, Jae-Ho
    • The Journal of Information Systems
    • /
    • v.21 no.4
    • /
    • pp.155-183
    • /
    • 2012
  • Means-Ends Network model was used to identify factors of means objective(means supplied by vendor) and fundamental objectives(purchasing motivations) for purchasing decision-making structure and dimensions of customer values on purchasers of internet shopping mall in Korea and China. In Means-Ends Network 6 factors(shopping travel, shipping assurance, vendor trust, online payment, product choice, and recommender systems) were found as a means objectives and 3 factors(shopping convenience, internet environment, customer support) as a fundamental objectives of shopping. However the results of hypotheses test for Means-Ends Network show some important differences between two countries. Something important to notice here is that Chinese customers shopping in China recognize shipping assurance factor and vendor trust factor as important factors satisfying all fundamental objectives unlike as in the case of our country. As these two factors are attribution factors responsible to the sellers, it is identified that customers do not trust the sellers and sellers have not met the expectations of customers. Therefore, these results show that the seller efforts assuring the reliability of the seller themselves, such as conducting its own compensation scheme are more important rather than the establishment of the guarantee institution to guarantee reliability and delivery assurance of sellers and implementation of legal and institutional apparatus such as the settlement of e-commerce licence system. Though this study presents such an important marketing implications, it can be pointed out that the limits are this research was done on the general Internet shopping malls without considering the Internet shopping mall types of diversity, the survey was designed around the student samples for convenience of the investigation because it was an international survey and the collected data has been limited to the western coast cities, such as China's Beijing, Shanghai, and Dalian.

Probabilistic Reinterpretation of Collaborative Filtering Approaches Considering Cluster Information of Item Contents (항목 내용물의 클러스터 정보를 고려한 협력필터링 방법의 확률적 재해석)

  • Kim, Byeong-Man;Li, Qing;Oh, Sang-Yeop
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.9
    • /
    • pp.901-911
    • /
    • 2005
  • With the development of e-commerce and the proliferation of easily accessible information, information filtering has become a popular technique to prune large information spaces so that users are directed toward those items that best meet their needs and preferences. While many collaborative filtering systems have succeeded in capturing the similarities among users or items based on ratings to provide good recommendations, there are still some challenges for them to be more efficient, especially the user bias problem, non-transitive association problem and cold start problem. Those three problems impede us to capture more accurate similarities among users or items. In this paper, we provide probabilistic model approaches for UCHM and ICHM which are suggested to solve the addressed problems in hopes of achieving better performance. In this probabilistic model, objects (users or items) are classified into groups and predictions are made for users considering the Gaussian distribution of user ratings. Experiments on a real-word data set illustrate that our proposed approach is comparable with others.

Considering Customer Buying Sequences to Enhance the Quality of Collaborative Filtering (구매순서를 고려한 개선된 협업필터링 방법론)

  • Cho, Yeong-Bin;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.2
    • /
    • pp.69-80
    • /
    • 2007
  • The preferences of customers change over time. However, existing collaborative filtering (CF) systems are static, since they only incorporate information regarding whether a customer buys a product during a certain period and do not make use of the purchase sequences of customers. Therefore, the quality of the recommendations of the typical CF could be improved through the use of information on such sequences. In this study, we propose a new methodology for enhancing the quality of CF recommendation that uses customer purchase sequences. The proposed methodology is applied to a large department store in Korea and compared to existing CF techniques. Various experiments using real-world data demonstrate that the proposed methodology provides higher quality recommendations than do typical CF techniques with better performance.

  • PDF

User Playlist-Based Music Recommendation Using Music Metadata Embedding (음원 메타데이터 임베딩을 활용한 사용자 플레이리스트 기반 음악 추천)

  • Kyoung Min Nam;Yu Rim Park;Ji Young Jung;Do Hyun Kim;Hyon Hee Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.8
    • /
    • pp.367-373
    • /
    • 2024
  • The growth of mobile devices and network infrastructure has brought significant changes to the music industry. Online streaming services has allowed music consumption without constraints of time and space, leading to increased consumer engagement in music creation and sharing activities, resulting in a vast accumulation of music data. In this study, we define metadata as "song sentences" by using a user's playlist. To calculate similarity, we embedded them into a high-dimensional vector space using skip-gram with negative sampling algorithm. Performance eva luation results indicated that the recommended music algorithm, utilizing singers, genres, composers, lyricists, arrangers, eras, seasons, emotions, and tag lists, exhibited the highest performance. Unlike conventional recommendation methods based on users' behavioral data, our approach relies on the inherent information of the tracks themselves, potentially addressing the cold start problem and minimizing filter bubble phenomena, thus providing a more convenient music listening experience.

A Study on the Effect of Network Centralities on Recommendation Performance (네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.23-46
    • /
    • 2021
  • Collaborative filtering, which is often used in personalization recommendations, is recognized as a very useful technique to find similar customers and recommend products to them based on their purchase history. However, the traditional collaborative filtering technique has raised the question of having difficulty calculating the similarity for new customers or products due to the method of calculating similaritiesbased on direct connections and common features among customers. For this reason, a hybrid technique was designed to use content-based filtering techniques together. On the one hand, efforts have been made to solve these problems by applying the structural characteristics of social networks. This applies a method of indirectly calculating similarities through their similar customers placed between them. This means creating a customer's network based on purchasing data and calculating the similarity between the two based on the features of the network that indirectly connects the two customers within this network. Such similarity can be used as a measure to predict whether the target customer accepts recommendations. The centrality metrics of networks can be utilized for the calculation of these similarities. Different centrality metrics have important implications in that they may have different effects on recommended performance. In this study, furthermore, the effect of these centrality metrics on the performance of recommendation may vary depending on recommender algorithms. In addition, recommendation techniques using network analysis can be expected to contribute to increasing recommendation performance even if they apply not only to new customers or products but also to entire customers or products. By considering a customer's purchase of an item as a link generated between the customer and the item on the network, the prediction of user acceptance of recommendation is solved as a prediction of whether a new link will be created between them. As the classification models fit the purpose of solving the binary problem of whether the link is engaged or not, decision tree, k-nearest neighbors (KNN), logistic regression, artificial neural network, and support vector machine (SVM) are selected in the research. The data for performance evaluation used order data collected from an online shopping mall over four years and two months. Among them, the previous three years and eight months constitute social networks composed of and the experiment was conducted by organizing the data collected into the social network. The next four months' records were used to train and evaluate recommender models. Experiments with the centrality metrics applied to each model show that the recommendation acceptance rates of the centrality metrics are different for each algorithm at a meaningful level. In this work, we analyzed only four commonly used centrality metrics: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. Eigenvector centrality records the lowest performance in all models except support vector machines. Closeness centrality and betweenness centrality show similar performance across all models. Degree centrality ranking moderate across overall models while betweenness centrality always ranking higher than degree centrality. Finally, closeness centrality is characterized by distinct differences in performance according to the model. It ranks first in logistic regression, artificial neural network, and decision tree withnumerically high performance. However, it only records very low rankings in support vector machine and K-neighborhood with low-performance levels. As the experiment results reveal, in a classification model, network centrality metrics over a subnetwork that connects the two nodes can effectively predict the connectivity between two nodes in a social network. Furthermore, each metric has a different performance depending on the classification model type. This result implies that choosing appropriate metrics for each algorithm can lead to achieving higher recommendation performance. In general, betweenness centrality can guarantee a high level of performance in any model. It would be possible to consider the introduction of proximity centrality to obtain higher performance for certain models.

Preference Prediction System using Similarity Weight granted Bayesian estimated value and Associative User Clustering (베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템)

  • 정경용;최성용;임기욱;이정현
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.316-325
    • /
    • 2003
  • A user preference prediction method using an exiting collaborative filtering technique has used the nearest-neighborhood method based on the user preference about items and has sought the user's similarity from the Pearson correlation coefficient. Therefore, it does not reflect any contents about items and also solve the problem of the sparsity. This study suggests the preference prediction system using the similarity weight granted Bayesian estimated value and the associative user clustering to complement problems of an exiting collaborative preference prediction method. This method suggested in this paper groups the user according to the Genre by using Association Rule Hypergraph Partitioning Algorithm and the new user is classified into one of these Genres by Naive Bayes classifier to slove the problem of sparsity in the collaborative filtering system. Besides, for get the similarity between users belonged to the classified genre and new users, this study allows the different estimated value to item which user vote through Naive Bayes learning. If the preference with estimated value is applied to the exiting Pearson correlation coefficient, it is able to promote the precision of the prediction by reducing the error of the prediction because of missing value. To estimate the performance of suggested method, the suggested method is compared with existing collaborative filtering techniques. As a result, the proposed method is efficient for improving the accuracy of prediction through solving problems of existing collaborative filtering techniques.