• Title/Summary/Keyword: Recommender

Search Result 527, Processing Time 0.028 seconds

The Technique of Reference-based Journal Recommendation Using Information of Digital Journal Subscriptions and Usage Logs (전자 저널 구독 정보 및 웹 이용 로그를 활용한 참고문헌 기반 저널 추천 기법)

  • Lee, Hae-sung;Kim, Soon-young;Kim, Jay-hoon;Kim, Jeong-hwan
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.75-87
    • /
    • 2016
  • With the exploration of digital academic information, it is certainly required to develop more effective academic contents recommender system in order to accommodate increasing needs for accessing more personalized academic contents. Considering historical usage data, the academic content recommender system recommends personalized academic contents which corresponds with each user's preference. So, the academic content recommender system effectively increases not only the accessibility but also usability of digital academic contents. In this paper, we propose the new journal recommendation technique based on information of journal subscription and web usage logs in order to properly recommend more personalized academic contents. Our proposed recommendation method predicts user's preference with the institution similarity, the journal similarity and journal importance based on citation relationship data of references and finally compose institute-oriented recommendations. Also, we develop a recommender system prototype. Our developed recommender system efficiently collects usage logs from distributed web sites and processes collected data which are proper to be used in proposed recommender technique. We conduct compare performance analysis between existing recommender techniques. Through the performance analysis, we know that our proposed technique is superior to existing recommender methods.

Attack Detection in Recommender Systems Using a Rating Stream Trend Analysis (평가 스트림 추세 분석을 이용한 추천 시스템의 공격 탐지)

  • Kim, Yong-Uk;Kim, Jun-Tae
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.85-101
    • /
    • 2011
  • The recommender system analyzes users' preference and predicts the users' preference to items in order to recommend various items such as book, movie and music for the users. The collaborative filtering method is used most widely in the recommender system. The method uses rating information of similar users when recommending items for the target users. Performance of the collaborative filtering-based recommendation is lowered when attacker maliciously manipulates the rating information on items. This kind of malicious act on a recommender system is called 'Recommendation Attack'. When the evaluation data that are in continuous change are analyzed in the perspective of data stream, it is possible to predict attack on the recommender system. In this paper, we will suggest the method to detect attack on the recommender system by using the stream trend of the item evaluation in the collaborative filtering-based recommender system. Since the information on item evaluation included in the evaluation data tends to change frequently according to passage of time, the measurement of changes in item evaluation in a fixed period of time can enable detection of attack on the recommender system. The method suggested in this paper is to compare the evaluation stream that is entered continuously with the normal stream trend in the test cycle for attack detection with a view to detecting the abnormal stream trend. The proposed method can enhance operability of the recommender system and re-usability of the evaluation data. The effectiveness of the method was verified in various experiments.

SRS: Social Correlation Group based Recommender System for Social IoT Environment

  • Kang, Deok-Hee;Choi, Hoan-Suk;Choi, Sang-Gyu;Rhee, Woo-Seop
    • International Journal of Contents
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2017
  • Recently, the Social Internet of Things (IoT), the follow-up of the IoT, has been studied to expand the existing IoT services, by integrating devices into the social network of people. In the Social IoT environment, humans, devices and digital contents are connected with social relationships, to guarantee the network navigability and establish levels of trustworthiness. However, this environment handles massive data, including social data of humans (e.g., profile, interest and relationship), profiles of IoT devices, and digital contents. Hence, users and service providers in the Social IoT are exposed to arbitrary data when searching for specific information. A study about the recommender system for the Social IoT environment is therefore needed, to provide the required information only. In this paper, we propose the Social correlation group based Recommender System (SRS). The SRS generates a target group, depending on the social correlation of the service requirement. To generate the target group, we have designed an architecture, and proposed a procedure of the SRS based on features of social interest similarity and principles of the Collaborative Filtering and the Content-based Recommender System. With simulation results of the target scenario, we present the possibility of the SRS to be adapted to various Social IoT services.

The Influence of Social Presence on Evaluating Personalized Recommender Systems

  • Choi, Jae-Won;Lee, Hong-Joo;Kim, Yong-Chul
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.410-414
    • /
    • 2008
  • Providing recommendations is acknowledged as one of important features of a business-to-consumer online storefront. Though there have been many studies on algorithms and operational procedures of personalized recommender systems, there is still a lack of empirical evidence demonstrating relationships between social presence and two important outcome variables of recommender systems: reuse intention and trust. To test the existence of a causal link between social presence and reuse intention, and mediating role of trust between these two variables, this study performed experiments varying level of social presence while providing personalized recommendations to users based on their explicit preferences. This study also compared these effects in two different product contexts: hedonic and utilitarian product. The results show that the provision of higher social presence increases both the reuse intention and trust of the recommender systems. In addition, the influence of social presence on reuse intention in the setting of recommending utilitarian products is less than that in the setting of recommending hedonic products.

  • PDF

Using Experts Among Users for Novel Movie Recommendations

  • Lee, Kibeom;Lee, Kyogu
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.21-29
    • /
    • 2013
  • The introduction of recommender systems to existing online services is now practically inevitable, with the increasing number of items and users on online services. Popular recommender systems have successfully implemented satisfactory systems, which are usually based on collaborative filtering. However, collaborative filtering-based recommenders suffer from well-known problems, such as popularity bias, and the cold-start problem. In this paper, we propose an innovative collaborative-filtering based recommender system, which uses the concepts of Experts and Novices to create fine-grained recommendations that focus on being novel, while being kept relevant. Experts and Novices are defined using pre-made clusters of similar items, and the distribution of users' ratings among these clusters. Thus, in order to generate recommendations, the experts are found dynamically depending on the seed items of the novice. The proposed recommender system was built using the MovieLens 1 M dataset, and evaluated with novelty metrics. Results show that the proposed system outperforms matrix factorization methods according to discovery-based novelty metrics, and can be a solution to popularity bias and the cold-start problem, while still retaining collaborative filtering.

On the Effect of Significance of Correlation Coefficient for Recommender System

  • Lee, Hee-Choon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1129-1139
    • /
    • 2006
  • Pearson's correlation coefficient and vector similarity are generally applied to The users' similarity weight of user based recommender system. This study is needed to find that the correlation coefficient of similarity weight is effected by the number of pair response and significance probability. From the classified correlation coefficient by the significance probability test on the correlation coefficient and pair of response, the change of MAE is studied by comparing the predicted precision of the two. The results are experimentally related with the change of MAE from the significant correlation coefficient and the number of pair response.

  • PDF

Improving the MAE by Removing Lower Rated Items in Recommender System

  • Kim, Sun-Ok;Lee, Seok-Jun;Park, Young-Seo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.3
    • /
    • pp.819-830
    • /
    • 2008
  • Web recommender system was suggested in order to solve the problem which is cause by overflow of information. Collaborative filtering is the technique which predicts and recommends the suitable goods to the user with collection of preference information based on the history which user was interested in. However, there is a difficulty of recommendation by lack of information of goods which have less popularity. In this paper, it has been researched the way to select the sparsity of goods and the preference in order to solve the problem of recommender system's sparsity which is occurred by lack of information, as well as it has been described the solution which develops the quality of recommender system by selection of customers who were interested in.

  • PDF

POI Recommender System based on Folksonomy Using Mashup (매쉬업을 이용한 폭소노미 기반 POI 추천 시스템)

  • Lee, Dong Kyun;Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.13-20
    • /
    • 2009
  • The most of navigation services these days, are designed in order to just provide a shortest path from current position to destination for a user. Several navigation services provides not only the path but some fragmentary information about its point, but, the data tends to be highly restricted because it's quality and quantity totally depends on service provider's providing policy. In this paper, we describe the folksonomy POI(Point of interest) recommender system using mashup in order to provide the information that is more useful to the user. The POI recommender system mashes-up the user's folksonomy data that stacked by user with using external folksonomy service(like Flickr) with others' in order to provide more useful information for the user. POI recommender system recommends others' tag data that is evaluated with the user folksonomy similarity. Using folksonomy mahup makes the services can provide more information that is applied the users' karma. By this, we show how to deal with the data's restrictions of quality and quantity.

the Development of Personalization Design framework for building Customized Website - focused on the Application of Design Recommender System (고객맞춤형 웹사이트 구현을 위한 개인화 디자인 프레임웍의 개발 - 디자인 추천 시스템의 활용을 중심으로)

  • 서종환
    • Archives of design research
    • /
    • v.16 no.2
    • /
    • pp.23-34
    • /
    • 2003
  • The need for personalized web site design has been increased these days. Current approach for personalized web site design is easily applied to web site with their cost-effective feature, but is hard to provide a more refined personalized service due to its lack of accumulation of user data. In this study, the design recommender system is investigated as a more advanced method for web site design personalization. We provide an overview of current recommender systems, and then outlined a newly developed design recommender system, which employs collaborative filtering technique to provide tailored recommendation for users.

  • PDF

Topic Modeling-based Book Recommendations Considering Online Purchase Behavior (온라인 구매 행태를 고려한 토픽 모델링 기반 도서 추천)

  • Jung, Youngjin;Cho, Yoonho
    • Knowledge Management Research
    • /
    • v.18 no.4
    • /
    • pp.97-118
    • /
    • 2017
  • Thanks to the development of social media, general users become information and knowledge providers. But customers also feel difficulty to decide their purchases due to numerous information. Although recommender systems are trying to solve these information/knowledge overload problem, it may be asked whether they can honestly reflect customers' preferences. Especially, customers in book market consider contents of a book, recency, and price when they make a purchase. Therefore, in this study, we propose a methodology which can reflect these characteristics based on topic modeling and provide proper recommendations to customers in book market. Through experiments, our methodology shows higher performance than traditional collaborative filtering systems. Therefore, we expect that our book recommender system contributes the development of recommender systems studies and positively affect the customer satisfaction and management.