본 연구는 4차 산업혁명의 글로벌 추세하에서 한국의 산업경쟁력약화라는 현실에 직면하여, 지역산업정책의 현황과 성과를 분석하고 향후 새로운 국가성장전략으로서의 지역산업정책이 지향해야 할 정책방향을 제시하고자 함에 목적이 있다. 이를 위하여 본 연구는 문헌연구에 기초하여 변화된 정책환경에 부합되는 새로운 지역산업정책의 틀을 구상함에 주안점을 두었다. 먼저, 큰 틀의 정책방향으로 권역 간 형평과 권역 내 효율의 동시적 추구라는 산업정책틀을 제시한다. 이를 위한 구체적 정책방안으로 첫째, 지역주도 지역산업정책 거버넌스의 구축, 둘째, 인력양성중심, 중앙정부컨설팅을 법제화한 지역산업정책 기획, 셋째, 지역고유의 문화와 정체성에 기초한 라이프 스타일 산업 생태계 조성을 통한 지역전략산업 육성 넷째, 4차 산업혁명기술의 종합시현장인 스마트시티를 참여형 혁신플랫폼, 창업 및 자본유치 플랫폼, 공공조달과 데이터에 기반 한 신산업육성 플랫폼으로 활용할 것을 제안한다. 본 연구는 4차 산업혁명의 전개와 기존산업의 경쟁력 상실이라는 새로운 환경에 대한 대처전략의 제시에 의의가 있으며, 향후 세부적인 실천방안에 대한 추가연구가 요구된다.
소셜 네트워크는 사용자들의 공통된 관심사, 경험, 그리고 일상 생활들을 함께 공유하기 위해 소셜 네트워크 상 사람들을 서로 연결시켜주는 거대한 커뮤니케이션 플랫폼이다. 소셜 네트워크상의 사용자들은 포스팅, 댓글, 인스턴스 메시지, 게임, 소셜 이벤트 외에도 다양한 애플리케이션을 통해 다른 사용자들과 소통하고 개인 정보 관리하는데 많은 시간을 소비한다. 소셜 네트워크 상의 풍부한 사용자 정보는 추천시스템이 추천 성능을 향상시키기 위해 필요한 큰 잠재력이 되었다. 대부분의 사용자들은 어떤 상품을 구매하기 전 가까운 관계이거나 같은 성향을 가진 사람들의 의견을 반영하여 의사 결정을 하게 된다. 그러므로 소셜 네트워크에서의 사용자 관계는 추천시스템을 위한 사용자 선호도 예측을 효율적으로 높이는데 중요한 요소라 할 수 있다. 일부 연구자들은 소셜 네트워크에서의 사용자와 다른 사용자들 사이의 상호작용 즉, 소셜 관계(social relationship)와 같은 소셜 데이터가 추천시스템에서 추천의 질에 어떠한 영향을 미치는가를 연구하고 있다. 추천시스템은 아마존, 이베이, Last.fm과 같은 큰 규모의 전자상거래 사이트 또한 채택하여 사용되는 시스템으로, 추천시스템을 위한 방법으로는 협업적 여과 방법과 내용 기반 여과 방법이 있다. 협업적 여과 방법은 사용자들의 선호도 학습에 의해 사용자가 아직 평가하지 않은 아이템 중 선호할 수 있는 아이템을 정확하게 제안하기 위한 추천시스템 방법 중 하나이다. 협업적 여과는 사용자들의 데이터에 초점을 맞춘 방법으로 유사한 배경과 선호도를 가지는 사용자들로부터 정보를 수집하여 사용자들의 선호도 예측을 자동으로 발생시킨다. 특히 협업적 여과는 근접한 이웃 사용자들에 의해서 목적 사용자가 선호할 수 있는 아이템을 제시하는 것으로 유사한 이웃 사용자를 찾는 것이 중요하다. 좋은 이웃 사용자 발견은 사용자와 아이템을 고려하는 방법이 일반적이다. 각 사용자는 아이템 즉, 영화, 상품, 책 등에 자신의 선호도를 나타내기 위하여 평가 값을 입력하고, 시스템은 이를 바탕으로 사용자-평가 행렬을 구축한다. 이 사용자-평가 행렬은 목적 사용자와 유사하게 아이템을 평가한 사용자 그룹을 찾기 위한 것으로, 목적 사용자가 아직 평가하지 않은 아이템에 대하여 사용자-평가 매트릭스를 통해 그 평가 값을 예측한다. 현재 이 협업적 여과 방법은 전자상거래와 정보 검색에서 적용되어 개인화 시스템에 효율적으로 사용되고 있다. 하지만 초기 사용자 문제, 데이터 희박성 문제와 확장성 그리고 예측 정확도 향상 등 해결해야 할 과제가 여전히 남아 있다. 이러한 문제들을 해소하기 위해 많은 연구자들은 하이브리드, 신뢰기반, 소셜 네트워크 기반 협업적 여과와 같은 다양한 방법을 제안하였다. 본 논문에서는 전통적인 협업적 여과 방식의 예측 정확도와 추천 성능을 향상시키기 위해 소셜 네트워크에 존재하는 소셜 관계를 이용한 협업적 여과 시스템을 제안한다. 소셜 관계는 소셜 네트워크 서비스 중 하나인 페이스북 사용자들이 남긴 포스팅과 사용자의 소셜 네트워크 친구와 의견 교류 중 남긴 코멘트와 같은 사용자 행동을 기반으로 정의된다. 소셜 관계를 구축하기 위해 소셜 네트워크 사용자의 포스팅과 댓글을 추출하고, 추출된 텍스트에 불용어 및 특수 기호 제거와 스테밍 등 전처리를 수행하였다. 특징 벡터는 TF-IDF를 이용하여 전처리된 텍스트에 나타난 각 단어에 대한 특징 점수를 계산함으로써 구축된다. 본 논문에서 이웃 사용자를 결정하기 위해 사용되는 사용자 간 유사도는 특징 벡터를 이용한 사용자 행동 유사도와 사용자의 영화 평가를 기반으로 한 전통적 방법의 유사도를 결합하여 계산된다. 제안하는 시스템은 목표 사용자와 제안한 방법을 통해 결정된 이웃 사용자 집단을 기반으로 목표 사용자가 평가하지 않은 아이템에 대한 선호도를 예측하고 Top-N 아이템을 선별하여 사용자에게 아이템을 추천하게 된다. 본 논문에서 제안하는 방법을 확인하고 평가하기 위하여 IMDB에서 제공하는 영화 정보 기반으로 영화 평가 시스템을 구축하였다. 예측 정확도를 평가하기 위해 MAE 값을 이용하여 제안하는 알고리즘이 얼마나 정확한 추천을 수행하는지에 대한 예측 정확도를 측정하였다. 그리고 정확도, 재현율 및 F1값 등을 활용하여 시스템의 성능을 평가하였으며, 시스템의 추천 품질은 커버리지를 이용하여 평가되었다. 실험 결과로부터 본 논문에서 제안한 시스템이 보다 더 정확하고 좋은 성능으로 사용자에게 아이템을 추천하는 것을 볼 수 있었다. 특히 소셜 네트워크에서 사용자 행동을 기반으로 한 소셜 관계를 이용함으로써 추천 정확도를 6% 향상시킴을 보였다. 또한 벤치마크 알고리즘과의 성능비교 실험을 통해 7% 향상된 추천 성능의 결과를 보여준다. 그러므로 사용자의 행동으로부터 관찰된 소셜 관계를 CF방법과 결합한 제안한 방법이 정확한 추천시스템을 위해 유용하며, 추천시스템의 성능과 품질을 향상시킬 수 있음을 알 수 있다.
1인 스마트폰 사용으로 웹툰, 웹소설, TV드라마는 생산자에서 소비자에게 직접적으로 소비할 수 있는 Direct-to-Consumer로 전환되고 있다. 특히, 포털사이트의 웹드라마는 새로운 미디어로 급성장하고 있다. '연애세포', '0시의 그녀', '최고의 미래', '우리 옆집에 EXO가 산다' 등을 TV드라마의 시청률처럼 조회수, 유입자, 댓글, 좋아요 등으로 다양한 반응을 분석할 수 있다. 분석 방법은 소셜미디어 빅데이터의 텍스트 마이닝 기법과 오피니언 마이닝 기법으로 작품을 분석했다. 즉, 웹드라마 마다의 특정 키워드를 추출하고, 추출한 키워드의 긍정, 부정, 중립 등 시청자의 감정을 예측할 수도 있다. 주요 인기 웹드라마를 분석한 결과로는 이미 팬을 확보한 K-Pop 아이돌 멤버의 출현과 포털사이트의 편성 회사와의 연관성이 재생수, 유입자, 댓글, 좋아요에 큰 영향을 미치는 것으로 나타났다. 또한 TV 이외의 매체로 '모바일 TV'의 영향력을 증명하였다. 한계점으로는 모바일 특화 콘텐츠 확보와 비즈니스 모델을 정립하는 것이 필요하겠다. 이 부분을 해결한다면, 한국은 웹드라마의 콘텐츠 강국이라는 긍정적 이미지를 보여줄 수 있는 계기가 될 것이다.
본 연구의 목적은 e-커머스의 산업 생태계가 활성화 될 수 있도록 온라인유통산업 이해관계자들이 활용 가능한 e-커머스 활성화 요인과 관련된 선행연구를 정리하고, e-커머스 전문가들을 대상으로 FGI를 진행하여 요인별 중요도를 산출하는 데 있다. 이에 선행연구와 FGI를 통해 도출된 핵심요인을 권혁인(2010)의 3 Level Service Model을 바탕으로 하여 계층구조모델을 구조화하고, AHP 방법론을 활용하여 각 요인의 가중치를 도출하였다. 상위요인에서는 민간(0.542) > 공동(0.237) > 공공(0.222) 순으로 중요하게 나타났다. 하위요인에서는 가중치 내림차순으로 '검색서비스 개발(0.0970)' > '추천서비스 개발(0.0805)' > '소비자 니즈 분석(0.0534)' > '고객 소비 패턴 분석(0.0505)' > '타 플랫폼 연계 서비스 개발(0.0450)' 등으로 나타나 우선순위 15위 이내의 요인을 대상으로 각각의 시사점을 기술하였다. 본 연구의 결과는 e-커머스 기업 뿐만 아니라 e-커머스 산업 전반에 활용될 수 있을 것이며, 빠르게 성장하고 있는 e-커머스 생태계에 학문적 토대를 제공할 수 있을 것이다.
온라인구직서비스는 가장 인기 있는 인터넷서비스 중의 하나이다. 구직자들에게 신규채용기업에 대한 정보와 함께 필요한 자료를 찾을 수 있는 검색엔진도 제공하기 때문이다. 그러나 대부분의 온라인구직사이트는 전통적인 수요자 풀 유형의 접근방식을 채택하고 있어 많은 경우 엉뚱한 검색결과를 도출하기도 한다. 한국산업진흥공단이 운영하는 월드잡플러스는 이러 문제를 해소하기 위해 머신 데이터 분석플렛폼인 스플렁크를 활용하여 보다 능동적이고 개인화된 서비스를 제공하고자 시도하고 있다. 월드잡플러스는 개인화된 매칭 기법을 이용하여 각각의 구직공고에 최적인 구직자 프로필이나 스펙정보를 제공하며, 구직자 선호도를 반영한 최적 맞춤형 구인공고 제공서비스 등을 제공하고 있다. 이런 분석기법은 기존의 구직에 성공한 유사 구직자 정보와 구인기업 자료 간의 유사성 등을 토대로 하는 추천방식이다. 결론으로 본 연구의 시사점과 제공서비스의 정책적 효과에 대해 논의하였다.
This study aims to analyze Instagram hashtags based on big data to investigate changes in consumer trends and perceptions of vegan fashion, and to derive strategies for revitalizing vegan fashion brands based on derived results. Among social media, Instagram was selected as a collection channel, and Instagram hashtags for 'Vegan Fashion' were collected from July 1, 2021 to December 31, 2021. After conducting semantic network analysis with the Ucinet 6 program based on the collected data, the CONCOR analysis on vegan fashion showed the following four clusters: 'Veganism practiced with fashion', 'Bag type of vegan fashion brand', 'Sharing vegan fashion', and 'Diversification of eco-friendly products'. Analysis results showed that the Instagram hashtag for vegan fashion confirmed the MZ generation's increased interest in vegan fashion and their thoughts to recommend and share frequently used items or brand products to people around them. CONCOR analysis of vegan fashion brands showed the following four groups: 'Differentiating the material of vegan bags', 'Eco-friendly products of vegan fashion brands', 'Interest in vegan shoes', and 'Donation campaign of vegan fashion brands'. CONCOR analysis on Meaningout showed the following four clusters: 'MZ Generation's Meaningout Start-up', 'Recommendation Platform for Skin Products', 'Value Consumption Trend for Eco-friendly Clothing', and 'Interest in Eco-friendly Packaging'. The results of this study on vegan fashion, a practical eco-friendly movement that can require changes in social responsibility and perception as issues that directly affect animals, the environment, and humans, are expected to provide basic data to help domestic vegan fashion brands develop marketing strategies.
이 연구의 목적은 미국 공공도서관과 국내 공공도서관의 목록 보강콘텐츠 서비스 제공 현황 비교를 통하여 시사점을 도출하고 향후 국내 공공도서관을 위한 목록 보강콘텐츠 서비스에 대한 개선방안을 모색하는 것이다. 2023년 9월 초부터 10월 중순까지 미국과 국내 공공도서관 홈페이지에서 특정 도서를 검색한 후, 검색결과에 나타난 보강콘텐츠 서비스 기능을 비교하였으며, 그 결과는 다음과 같다. 첫째, 국내 공공도서관 보강콘텐츠 서비스는 별도의 업체에서 보강콘텐츠 서비스 솔루션을 개발 후, 제공하는 방식이 필요하다. 둘째, 보강콘텐츠 서비스 솔루션은 도서중심정보, 도서추천정보, 이용자참여정보 영역에서 활용할 수 있는 국내 정보원을 발굴해야 한다. 셋째, 도서관정보 나루와 같은 공공데이터를 활용한 보강콘텐츠 개발이 필요하다. 넷째, 각 통합도서관은 지역커뮤니티 참여 서비스에서 생성되는 데이터를 보강콘텐츠 서비스로 활용할 수 있도록 해야 한다.
일반적으로 SNS (social network service) 데이터는 정형, 비정형 데이터가 섞여 빠르게 생성되는 빅데이터의 특성을 갖기 때문에 실시간 수집/저장/분석에 많은 어려움이 있다. 본 논문에서는 이러한 SNS 데이터의 분석에 활용할 수 있는 Apache Storm 기반 실시간 동적 데이터 시각화 기술을 제안한다. Storm은 대표적인 빅데이터 기술 중 하나로, 실시간으로 수집되는 데이터를 분산 환경에서 처리 및 분석하는 소프트웨어 플랫폼이다. 본 논문은 Storm을 사용하여 빠르게 발생하는 트위터(Twitter) 데이터를 수집 및 집계하고, 태그 클라우드를 통해 그 결과를 동적으로 표현하고자 한다. 이를 위해, 사용자가 요구하는 키워드를 입력받고 해당 키워드를 통한 시각화 결과를 실시간으로 확인할 수 있는 웹 인터페이스를 설계 및 구현한다. 또한, 각각의 태그 클라우드 결과를 비교하여 올바로 시각화되었는지 확인한다. 본 연구를 통해, 사용자는 관심있는 주제가 SNS에서 어떻게 변화하고 있는지 직관적으로 판단할 수 있게 되며, 시각화 결과는 주제별 트렌드 분석, 고객 니즈 파악 등 다른 서비스에도 활용이 가능하다.
부유식 구조물의 계류선의 설계는 강도뿐만 아니라 피로수명 측면에서도 검토가 반드시 요구된다. 일반적으로 계류선의 피로 설계에는 동적 응력을 야기하는 하중이 지배적인 영향을 미치게 된다. 즉, 파랑이 주요 설계 하중으로 고려가 된다. 본 연구에서는 불규칙 파랑에 대한 해중 터널 계류선의 피로 손상 특성에 대해 분석한다. 시간 이력 유체-구조 동역학 해석을 통해 특정 환경 하중에 대한 해중터널의 동적 운동 및 계류선에 발생하는 장력과 응력을 계산하고, Rainflow 집계법 및 Palmgren-Miner의 법칙 그리고 DNV 기준에서 제시하는 해양구조물 설계를 위한 S-N 곡선을 고려하여 단기 피로 손상을 추정한다. 해중 터널의 계류 형식과 유사한 계류 형식을 갖는 인장각 플랫폼의 텐던 설계를 참고하여 100년 재현 주기 파랑이 48시간 지속되는 조건을 가정하여 이 환경 하중에 의한 피로 손상도를 추정한다. 본 해석 절차를 따르며, 함체의 흘수와 계류선의 간격 및 초기 기울임 각도가 피로 손상도에 미치는 영향을 분석한다.
Purpose: The purpose of this study is to investigate a satisfaction survey of untact education and platforms that can be used for untact education to provide recommendations on future development of Education of Persons Conducting Clinical Trials. Methods: Online survey was distributed among students who have taken Untact Education of Persons Conducting Clinical Trials. The result was separated according to topic and descriptive statistics was used for analysis. The satisfaction survey used 10-point scale. Results: Of the 1,720 students who received the survey, 1,347 (78.3%) responded to the lecture satisfaction survey. The satisfaction level for broadcasting program (Kakao TV), an untact educational platform for the education of clinical trial workers at Kyung Hee University Medical Center, was relatively high with 8.09±1.99 points. Average score respondents recommending Kyung Hee University Untact Education of Persons Conducting Clinical Trials was 8.03±1.83 and customer recommendation score (Net Promotor Score) was 27.1%. Satisfaction level of the preferred training time was divided into weekday-morning (8-11 AM) (8.16±1.75), weekday-afternoon (12-4 PM) (7.73±2.07), weekday-evening (5-9 PM) (7.78±2.22), and weekend-morning (9-11 AM) real-time untact education (8.48±1.76) and analyzed. There was a noticeable difference between weekend-morning and weekday-afternoon (p<0.0001) and weekend-morning and weekday-evening (p=0.0001) real-time untact education. When asked about conducting education after COVID-19 pandemic ends, 79.2% (1,012 of 1,279) of the respondents answered that they prefer real-time untact education while 20.8 % (266 of 1,279) preferred face-to-face education. Conclusion: Online education, without time and space constraint, is expected to be the mainstream market in Korea for Education of Persons Conducting Clinical. Kyung Hee University Untact Education of Persons Conducting Clinical has achieved above average satisfaction using Kakao TV. Kyung Hee University Real-time Untact Education of Persons Conducting Clinical Net Promotor Score is 27.1%, which is above industry average, communication with trainees should be considered to improve Net Promotor Score.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.