• Title/Summary/Keyword: Recommendation Method

Search Result 976, Processing Time 0.019 seconds

A Study on the Method of Scholarly Paper Recommendation Using Multidimensional Metadata Space (다차원 메타데이터 공간을 활용한 학술 문헌 추천기법 연구)

  • Miah Kam;Jee Yeon Lee
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.1
    • /
    • pp.121-148
    • /
    • 2023
  • The purpose of this study is to propose a scholarly paper recommendation system based on metadata attribute similarity with excellent performance. This study suggests a scholarly paper recommendation method that combines techniques from two sub-fields of Library and Information Science, namely metadata use in Information Organization and co-citation analysis, author bibliographic coupling, co-occurrence frequency, and cosine similarity in Bibliometrics. To conduct experiments, a total of 9,643 paper metadata related to "inequality" and "divide" were collected and refined to derive relative coordinate values between author, keyword, and title attributes using cosine similarity. The study then conducted experiments to select weight conditions and dimension numbers that resulted in a good performance. The results were presented and evaluated by users, and based on this, the study conducted discussions centered on the research questions through reference node and recommendation combination characteristic analysis, conjoint analysis, and results from comparative analysis. Overall, the study showed that the performance was excellent when author-related attributes were used alone or in combination with title-related attributes. If the technique proposed in this study is utilized and a wide range of samples are secured, it could help improve the performance of recommendation techniques not only in the field of literature recommendation in information services but also in various other fields in society.

A Customized Healthy Menu Recommendation Method Using Content-Based and Food Substitution Table (내용 기반 및 식품 교환 표를 이용한 맞춤형 건강식단 추천 기법)

  • Oh, Yoori;Kim, Yoonhee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.3
    • /
    • pp.161-166
    • /
    • 2017
  • In recent times, many people have problems of nutritional imbalance; lack or surplus intake of a specific nutrient despite the variety of available foods. Accordingly, the interest in health and diet issues has increased leading to the emergence of various mobile applications. However, most mobile applications only record the user's diet history and show simple statistics and usually provide only general information for healthy diet. It is necessary for users interested in healthy eating to be provided recommendation services reflecting their food interest and providing customized information. Hence, we propose a menu recommendation method which includes calculating the recommended calorie amount based on the user's physical and activity profile to assign to each food group a substitution unit. In addition, our method also analyzes the user's food preferences using food intake history. Thus it satisfies recommended intake unit for each food group by exchanging the user's preferred foods. Also, the excellence of our proposed algorithm is demonstrated through the calculation of precision, recall, health index and the harmonic average of the 3 aforementioned measures. We compare it to another method which considers user's interest and recommended substitution unit. The proposed method provides menu recommendation reflecting interest and personalized health status by which user can improve and maintain a healthy dietary habit.

A Study of IPTV-VOD Program Recommendation System Using Hybrid Filtering (복합 필터링을 이용한 IPTV-VOD 프로그램 추천 시스템 연구)

  • Kang, Yong-Jin;Sun, Chul-Yong;Park, Kyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.4
    • /
    • pp.9-19
    • /
    • 2010
  • In this paper, a new program recommendation system is proposed to recommend user preferred VOD program in IPTV environment. A proposed system is implemented with hybrid filtering method that can cooperatively complements the shortcomings of the content-based filtering and collaborative filtering. For a user program preference, a single-scaled measure is designed so that the recommendation performance between content-based filtering and collaborative filtering is easily compared and reflected to final hybrid filtering procedure. In order to provide more accurate program recommendation, we use not only the user watching history, but also the user program preference and sub-genre program preference updated every week as a user preference profile. System performance is evaluated with modified IPTV data from real 24-weeks cable TV watching data provided by Nilson Research Corp. and it shows quite comparative quality of recommendation.

Relationship Between Perceived Risk and Physician Recommendation and Repeat Mammography in the Female Population in Tehran, Iran

  • Moshki, Mahdi;Taymoori, Parvaneh;Khodamoradi, Sahmireh;Roshani, Daem
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.161-166
    • /
    • 2016
  • Iranian women are at high risk of low compliance with repeat mammography due to a lack of awareness about breast cancer, negative previous experiences, cultural beliefs, and no regular visits to a physician. Thus research is needed to explore factors associated with repeated mammography participation. Applying the concept of perceived risk as the guiding model, this study aimed to test the fit and strength of the relationship between perceived risk and physician recommendation in explaining repeat mammography. A total of 601 women, aged 50 years and older referred to mammography centers in region 6, were recruited via a convenience sampling method. Using path analysis, family history of breast cancer and other types of cancer were modeled as antecedent perceived risk, and physician recommendation and knowledge were modeled as an antecedent of the number of mammography visits. The model explained 49% of the variance in repeat mammography. The two factors of physician recommendation and breast self-examination had significant direct effects (P < 0.05) on repeat mammography. Perceived risk, knowledge, and family history of breast cancer had significant indirect effects on repeat mammography through physician recommendation. The results of this study provide a background for further research and interventions not only on Iranian women but also on similar cultural groups and immigrants who have been neglected to date in the mammography literature.

Design of Web Recommendation Service Based on Consumer's Sensibility (고객 감성에 기반한 웹 추천 서비스 설계)

  • Jeon, Yong-Woong;Kim, Jae-Kuk;Park, Ji-Young;Cho, Am
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.85-94
    • /
    • 2008
  • Internet shopping has been getting more rousing due to extension of supply with PC(personal computer) and a rapid rise of use of internet. Some companies have been continually researching in how to serve individuals with each ordered information, which aimed at getting ordinary customers to induce to be loyal customers. For that, there is progress of a service of a web-recommendation which considers individual attribution. This study is suggested a method which is a service of the web-recommendation by access to sensibility ergonomics approach. Previous studies established that service had a weak point. It did not manage to realize new needs of customers. Proposed service of the web-recommendation has been designed, which preferentially propose goods included customer's sensibility to the customer who wants it. This study is expected that it will encourage a rise of products' purchasing power of customers, make an increase in a profit of both sellers and people who operate electric commercial and satisfaction of customers will go up in the same. Also, products accord with sensibility of customers will be recommended customers by the suggested service of the web-recommendation. In addition, there will be a decline of time-consuming about making a choice among some products.

Non-hierarchical Clustering based Hybrid Recommendation using Context Knowledge (상황 지식을 이용한 비계층적 군집 기반 하이브리드 추천)

  • Baek, Ji-Won;Kim, Min-Jeong;Park, Roy C.;Jung, Hoill;Chung, Kyungyong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.3
    • /
    • pp.138-144
    • /
    • 2019
  • In a modern society, people are concerned seriously about their travel destinations depending on time, economic problem. In this paper, we propose an non-hierarchical clustering based hybrid recommendation using context knowledge. The proposed method is personalized way of recommended knowledge about preferred travel places according to the user's location, place, and weather. Based on 14 attributes from the data collected through the survey, users with similar characteristics are grouped using a non-hierarchical clustering based hybrid recommendation. This makes more accurate recommendation by weighting implicit and explicit data. The users can be recommended a preferred travel destination without spending unnecessary time. The performance evaluation uses accuracy, recall, F-measure. The evaluation result was shown 0.636 accuracy, 0.723 recall, and 0.676 F-measure.

Multimodal Media Content Classification using Keyword Weighting for Recommendation (추천을 위한 키워드 가중치를 이용한 멀티모달 미디어 콘텐츠 분류)

  • Kang, Ji-Soo;Baek, Ji-Won;Chung, Kyungyong
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.1-6
    • /
    • 2019
  • As the mobile market expands, a variety of platforms are available to provide multimodal media content. Multimodal media content contains heterogeneous data, accordingly, user requires much time and effort to select preferred content. Therefore, in this paper we propose multimodal media content classification using keyword weighting for recommendation. The proposed method extracts keyword that best represent contents through keyword weighting in text data of multimodal media contents. Based on the extracted data, genre class with subclass are generated and classify appropriate multimodal media contents. In addition, the user's preference evaluation is performed for personalized recommendation, and multimodal content is recommended based on the result of the user's content preference analysis. The performance evaluation verifies that it is superiority of recommendation results through the accuracy and satisfaction. The recommendation accuracy is 74.62% and the satisfaction rate is 69.1%, because it is recommended considering the user's favorite the keyword as well as the genre.

Convolutional Neural Network Model Using Data Augmentation for Emotion AI-based Recommendation Systems

  • Ho-yeon Park;Kyoung-jae Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.57-66
    • /
    • 2023
  • In this study, we propose a novel research framework for the recommendation system that can estimate the user's emotional state and reflect it in the recommendation process by applying deep learning techniques and emotion AI (artificial intelligence). To this end, we build an emotion classification model that classifies each of the seven emotions of angry, disgust, fear, happy, sad, surprise, and neutral, respectively, and propose a model that can reflect this result in the recommendation process. However, in the general emotion classification data, the difference in distribution ratio between each label is large, so it may be difficult to expect generalized classification results. In this study, since the number of emotion data such as disgust in emotion image data is often insufficient, correction is made through augmentation. Lastly, we propose a method to reflect the emotion prediction model based on data through image augmentation in the recommendation systems.

A Comparative Study on the Preference and Purchase/Recommendation Intention of Korean Food Menu among Major Countries by Continent (대륙별 주요국가들의 한식 메뉴 선호도와 구매 및 추천의도에 관한 비교연구)

  • Hyojae Jung;Youngkyung Kim;Youngsuk Kim;Jieun Oh
    • Journal of the Korean Society of Food Culture
    • /
    • v.39 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Food is essential for sustenance and reflects a country's identity, making it crucial to identify the cultural needs for effectively localizing Korean food. This study surveyed 825 adults from four continents (eight countries) to examine their preferences, familiarity, and attitudes toward Korean food. Significant correlations(p< .001) were found between the familiarity and preference for Korean food, with variations observed across continents. Among the representative Korean food items, the average preference score was 4.67, and the purchase/recommendation intention score was 4.88. Seven items received above-average ratings (e.g., gogi-deopbap and kimchi-bokkeumbap), while some items showed high liking but low purchase/recommendation intention (e.g. dak-jjim and galbi-jjim). In addition, items such as gimbap and tteokbokki had high purchase/recommendation intention but low liking, and kimchi and vegetable foods etc. received low liking and purchase/recommendation intentions. In terms of the preferred meat according to the cooking method and seasoning, beef respondents preferred grilled·stir-fried and soup·stew·hot pot cooking methods, while pork or chicken respondents preferred grilled·stir-fried and frying methods. Soy sauce was the most preferred seasoning for all meat responses, followed by red pepper paste. These research findings provide fundamental data for developing Korean food products, segmented by continent.

Clustering Method of Weighted Preference Using K-means Algorithm and Bayesian Network for Recommender System (추천시스템을 위한 k-means 기법과 베이시안 네트워크를 이용한 가중치 선호도 군집 방법)

  • Park, Wha-Beum;Cho, Young-Sung;Ko, Hyung-Hwa
    • Journal of Information Technology Applications and Management
    • /
    • v.20 no.3_spc
    • /
    • pp.219-230
    • /
    • 2013
  • Real time accessiblity and agility in Ubiquitous-commerce is required under ubiquitous computing environment. The Research has been actively processed in e-commerce so as to improve the accuracy of recommendation. Existing Collaborative filtering (CF) can not reflect contents of the items and has the problem of the process of selection in the neighborhood user group and the problems of sparsity and scalability as well. Although a system has been practically used to improve these defects, it still does not reflect attributes of the item. In this paper, to solve this problem, We can use a implicit method which is used by customer's data and purchase history data. We propose a new clustering method of weighted preference for customer using k-means clustering and Bayesian network in order to improve the accuracy of recommendation. To verify improved performance of the proposed system, we make experiments with dataset collected in a cosmetic internet shopping mall.