Journal of the Korean Society for information Management
/
v.40
no.1
/
pp.121-148
/
2023
The purpose of this study is to propose a scholarly paper recommendation system based on metadata attribute similarity with excellent performance. This study suggests a scholarly paper recommendation method that combines techniques from two sub-fields of Library and Information Science, namely metadata use in Information Organization and co-citation analysis, author bibliographic coupling, co-occurrence frequency, and cosine similarity in Bibliometrics. To conduct experiments, a total of 9,643 paper metadata related to "inequality" and "divide" were collected and refined to derive relative coordinate values between author, keyword, and title attributes using cosine similarity. The study then conducted experiments to select weight conditions and dimension numbers that resulted in a good performance. The results were presented and evaluated by users, and based on this, the study conducted discussions centered on the research questions through reference node and recommendation combination characteristic analysis, conjoint analysis, and results from comparative analysis. Overall, the study showed that the performance was excellent when author-related attributes were used alone or in combination with title-related attributes. If the technique proposed in this study is utilized and a wide range of samples are secured, it could help improve the performance of recommendation techniques not only in the field of literature recommendation in information services but also in various other fields in society.
KIPS Transactions on Software and Data Engineering
/
v.6
no.3
/
pp.161-166
/
2017
In recent times, many people have problems of nutritional imbalance; lack or surplus intake of a specific nutrient despite the variety of available foods. Accordingly, the interest in health and diet issues has increased leading to the emergence of various mobile applications. However, most mobile applications only record the user's diet history and show simple statistics and usually provide only general information for healthy diet. It is necessary for users interested in healthy eating to be provided recommendation services reflecting their food interest and providing customized information. Hence, we propose a menu recommendation method which includes calculating the recommended calorie amount based on the user's physical and activity profile to assign to each food group a substitution unit. In addition, our method also analyzes the user's food preferences using food intake history. Thus it satisfies recommended intake unit for each food group by exchanging the user's preferred foods. Also, the excellence of our proposed algorithm is demonstrated through the calculation of precision, recall, health index and the harmonic average of the 3 aforementioned measures. We compare it to another method which considers user's interest and recommended substitution unit. The proposed method provides menu recommendation reflecting interest and personalized health status by which user can improve and maintain a healthy dietary habit.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.47
no.4
/
pp.9-19
/
2010
In this paper, a new program recommendation system is proposed to recommend user preferred VOD program in IPTV environment. A proposed system is implemented with hybrid filtering method that can cooperatively complements the shortcomings of the content-based filtering and collaborative filtering. For a user program preference, a single-scaled measure is designed so that the recommendation performance between content-based filtering and collaborative filtering is easily compared and reflected to final hybrid filtering procedure. In order to provide more accurate program recommendation, we use not only the user watching history, but also the user program preference and sub-genre program preference updated every week as a user preference profile. System performance is evaluated with modified IPTV data from real 24-weeks cable TV watching data provided by Nilson Research Corp. and it shows quite comparative quality of recommendation.
Iranian women are at high risk of low compliance with repeat mammography due to a lack of awareness about breast cancer, negative previous experiences, cultural beliefs, and no regular visits to a physician. Thus research is needed to explore factors associated with repeated mammography participation. Applying the concept of perceived risk as the guiding model, this study aimed to test the fit and strength of the relationship between perceived risk and physician recommendation in explaining repeat mammography. A total of 601 women, aged 50 years and older referred to mammography centers in region 6, were recruited via a convenience sampling method. Using path analysis, family history of breast cancer and other types of cancer were modeled as antecedent perceived risk, and physician recommendation and knowledge were modeled as an antecedent of the number of mammography visits. The model explained 49% of the variance in repeat mammography. The two factors of physician recommendation and breast self-examination had significant direct effects (P < 0.05) on repeat mammography. Perceived risk, knowledge, and family history of breast cancer had significant indirect effects on repeat mammography through physician recommendation. The results of this study provide a background for further research and interventions not only on Iranian women but also on similar cultural groups and immigrants who have been neglected to date in the mammography literature.
Jeon, Yong-Woong;Kim, Jae-Kuk;Park, Ji-Young;Cho, Am
Journal of the Ergonomics Society of Korea
/
v.27
no.4
/
pp.85-94
/
2008
Internet shopping has been getting more rousing due to extension of supply with PC(personal computer) and a rapid rise of use of internet. Some companies have been continually researching in how to serve individuals with each ordered information, which aimed at getting ordinary customers to induce to be loyal customers. For that, there is progress of a service of a web-recommendation which considers individual attribution. This study is suggested a method which is a service of the web-recommendation by access to sensibility ergonomics approach. Previous studies established that service had a weak point. It did not manage to realize new needs of customers. Proposed service of the web-recommendation has been designed, which preferentially propose goods included customer's sensibility to the customer who wants it. This study is expected that it will encourage a rise of products' purchasing power of customers, make an increase in a profit of both sellers and people who operate electric commercial and satisfaction of customers will go up in the same. Also, products accord with sensibility of customers will be recommended customers by the suggested service of the web-recommendation. In addition, there will be a decline of time-consuming about making a choice among some products.
Baek, Ji-Won;Kim, Min-Jeong;Park, Roy C.;Jung, Hoill;Chung, Kyungyong
Journal of the Institute of Convergence Signal Processing
/
v.20
no.3
/
pp.138-144
/
2019
In a modern society, people are concerned seriously about their travel destinations depending on time, economic problem. In this paper, we propose an non-hierarchical clustering based hybrid recommendation using context knowledge. The proposed method is personalized way of recommended knowledge about preferred travel places according to the user's location, place, and weather. Based on 14 attributes from the data collected through the survey, users with similar characteristics are grouped using a non-hierarchical clustering based hybrid recommendation. This makes more accurate recommendation by weighting implicit and explicit data. The users can be recommended a preferred travel destination without spending unnecessary time. The performance evaluation uses accuracy, recall, F-measure. The evaluation result was shown 0.636 accuracy, 0.723 recall, and 0.676 F-measure.
As the mobile market expands, a variety of platforms are available to provide multimodal media content. Multimodal media content contains heterogeneous data, accordingly, user requires much time and effort to select preferred content. Therefore, in this paper we propose multimodal media content classification using keyword weighting for recommendation. The proposed method extracts keyword that best represent contents through keyword weighting in text data of multimodal media contents. Based on the extracted data, genre class with subclass are generated and classify appropriate multimodal media contents. In addition, the user's preference evaluation is performed for personalized recommendation, and multimodal content is recommended based on the result of the user's content preference analysis. The performance evaluation verifies that it is superiority of recommendation results through the accuracy and satisfaction. The recommendation accuracy is 74.62% and the satisfaction rate is 69.1%, because it is recommended considering the user's favorite the keyword as well as the genre.
Journal of the Korea Society of Computer and Information
/
v.28
no.12
/
pp.57-66
/
2023
In this study, we propose a novel research framework for the recommendation system that can estimate the user's emotional state and reflect it in the recommendation process by applying deep learning techniques and emotion AI (artificial intelligence). To this end, we build an emotion classification model that classifies each of the seven emotions of angry, disgust, fear, happy, sad, surprise, and neutral, respectively, and propose a model that can reflect this result in the recommendation process. However, in the general emotion classification data, the difference in distribution ratio between each label is large, so it may be difficult to expect generalized classification results. In this study, since the number of emotion data such as disgust in emotion image data is often insufficient, correction is made through augmentation. Lastly, we propose a method to reflect the emotion prediction model based on data through image augmentation in the recommendation systems.
Food is essential for sustenance and reflects a country's identity, making it crucial to identify the cultural needs for effectively localizing Korean food. This study surveyed 825 adults from four continents (eight countries) to examine their preferences, familiarity, and attitudes toward Korean food. Significant correlations(p< .001) were found between the familiarity and preference for Korean food, with variations observed across continents. Among the representative Korean food items, the average preference score was 4.67, and the purchase/recommendation intention score was 4.88. Seven items received above-average ratings (e.g., gogi-deopbap and kimchi-bokkeumbap), while some items showed high liking but low purchase/recommendation intention (e.g. dak-jjim and galbi-jjim). In addition, items such as gimbap and tteokbokki had high purchase/recommendation intention but low liking, and kimchi and vegetable foods etc. received low liking and purchase/recommendation intentions. In terms of the preferred meat according to the cooking method and seasoning, beef respondents preferred grilled·stir-fried and soup·stew·hot pot cooking methods, while pork or chicken respondents preferred grilled·stir-fried and frying methods. Soy sauce was the most preferred seasoning for all meat responses, followed by red pepper paste. These research findings provide fundamental data for developing Korean food products, segmented by continent.
Journal of Information Technology Applications and Management
/
v.20
no.3_spc
/
pp.219-230
/
2013
Real time accessiblity and agility in Ubiquitous-commerce is required under ubiquitous computing environment. The Research has been actively processed in e-commerce so as to improve the accuracy of recommendation. Existing Collaborative filtering (CF) can not reflect contents of the items and has the problem of the process of selection in the neighborhood user group and the problems of sparsity and scalability as well. Although a system has been practically used to improve these defects, it still does not reflect attributes of the item. In this paper, to solve this problem, We can use a implicit method which is used by customer's data and purchase history data. We propose a new clustering method of weighted preference for customer using k-means clustering and Bayesian network in order to improve the accuracy of recommendation. To verify improved performance of the proposed system, we make experiments with dataset collected in a cosmetic internet shopping mall.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.