• Title/Summary/Keyword: Recombinant vector

Search Result 717, Processing Time 0.036 seconds

Structural Analysis of Plasmid pCL2.1 from Lactococcus lactis ssp. lactis $ML_8$ and the Construction of a New Shuttle Vector for Lactic Acid Bacteria

  • Jeong, Do-Won;Cho, San-Ho;Lee, Jong-Hoon;Lee, Hyong-Joo
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.396-401
    • /
    • 2009
  • The nucleotide sequence contains 2 open reading frames encoding a 45-amino-acid protein homologous to a transcriptional repressor protein CopG, and a 203-amino-acid protein homologous to a replication protein RepB. Putative countertranscribed RNA, a double-strand origin, and a single-strand origin were also identified. A shuttle vector, pUCL2.1, for various lactic acid bacteria (LAB) was constructed on the basis of the pCL2.1 replicon, into which an erythromycin-resistance gene as a marker and Escherichia coli ColE1 replication origin were inserted. pUCL2.1 was introduced into E. coli, Lc. lactis, Lactobacillus (Lb.) plantarum, Lb. paraplantarum, and Leuconostoc mesenteroides. The recombinant LAB maintained traits of transformed plasmid in the absence of selection pressure over 40 generations. Therefore, pUCL2.1 could be used as an E. coli/LAB shuttle vector, which is an essential to engineer recombinant LAB strains that are useful for food fermentations.

Construction of Recombinant Bombyx mori Nuclear Polyhedrosis Virus Using a FLP/FRT System of Yeast, Saccharomyces cerevisiae 2$\mu$m plasmid (Yeast의 FLP/FRT 시스템을 이용한 BmNPV의 유전자 재조합)

  • 강석우;윤은영
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.1
    • /
    • pp.52-59
    • /
    • 1998
  • For the construction of plasmid and bmNPV sarrying the FRT recognition site for the FLP recombinases, we synthesized the wild type FRT dligonucleotides. The target FRT sequences consist of three 13bp repeated DNA sequences; two repeats in a direct orientation and one inverted relative to the other two. In addition, there is an 8bp spacer region between the repeats which determune the orientation of the FRT recombination site. In order to place the FRT site both in target BmNPV genome and the transfer vector, we constructed a plasmid, FRT site both in the target BmNPv genome and the transfer vector, we constructed a plasmid, pFRT$\beta$-gal, carrying the FRT sites within the cloning sites of pSV vector and a recombinant BmNPV, vFRTPH, carrying the FRT sites at a downstream of polyhedrin promotor, respectively. In order to test the functionality of the FLP/FRT site-specific recombination system, vFRTPH, pFRT$\beta$-gal and pHsFLP DNA were co-transfected into BmN-4 cells. The resulting recombinant virus was designated a vFRT$\beta$2-gal. From construction analysis of the vFRT$\beta$2-gal with PCR technique it was concluded that the entire pFRT$\beta$-gal plasmid with $\beta$-galactosidase gene and origines of replication flanked by two functional hybrid FRT sequences. The efficiency of recombination was 8.7%, which was higher than that(2.2%) of recombination between a conventional transfer vector and the wild type BmNPV.

  • PDF

Construction of a Transposon-mediated Baculovirus Vector Hanpvid and a New Cell Line for Expressing Barnase

  • Qin, Qin;Liu, Ying-Le;Zhu, Ying;Li, Shun-Yi;Qi, Yi-Peng
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.41-48
    • /
    • 2005
  • In this study we developed the transposon-mediated shuttle vector 'Hanpvid', which composed of HaNPV (Heliothis armigera nuclear polyhedrosis virus) genomic DNA and a transposon cassette from Bacmid of Bac-to-Bac system. Hanpvid replicates in E. coli in the same way as Bacmid and retains infective function in cotton bollworm cells (Hz-AM1). Using Hanpvid we constructed a recombinant virus, which could infect Hz-AM1 cells and generate recombinant HaNPV (rHa-Bar) containing the barnase gene, a ribonuclease gene from Bacillus amyloliquefaciens. Since the expression vector carrying barnase gene cannot replicate in the absence of barstar, a specific inhibitor of barnase, we constructed a new cotton bollworm cell line (AM1-NB) using the marker rescue method. In AM1-NB barstar was integrated into the cellular chromosome to sustain the replication of rHa-Bar. To screen out recombinant HaNPV for potential use as biopesticide, Hz-AM1 and AM1-NB cell lines were infected with rHa-Bar, respectively. The results obtained indicate that Viral progenies in AM1-NB were 23 and 160 times greater than those in Hz-AM1 48 h and 72 h after infection, respectively. With additional insertion of the polyhedron gene from AcNPV (Autographa californica nuclear polyhedrosis virus) into the Hanpvid genome, rHa-Bar regained the polyhedron phenotype and its pest-killing rate greatly improved. Toxic analysis showed that the lethal dosages ($LD_{50}$) and the lethal time(s) ($LT_{50}$) of rHa-Bar were reduced by 20% and 30%, respectively, compared to wt-HaNPV in the third instar larvae of cotton bollworm. This study shows that in AM1-NB barnase can be effectively produced and used as pest-killing agent for the biological control of cotton pests.

Systemic Analysis of a Novel Coxsackievirus Gene Delivery System in a Mouse Model

  • Kim, Yeon-Jung;Yun, Soo-Hyeon;Lim, Byung-Kwan;Park, Ki-Bum;Na, Ha-Na;Jeong, Soo-Young;Kim, Dae-Sun;Cho, Young-Joo;Jeon, Eun-Seok;Nam, Jae-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.307-313
    • /
    • 2009
  • In order to systemically investigate the possibility of using coxsackievirus B3 (CVB3) to deliver foreign genes in vivo, a recombinant strain of CVB3 encoding the renilla gene (CVB3-renilla) was constructed. The recombinant CVB3 resulted in extensive and transient expression of the renilla protein within mouse organs, especially the pancreas. The level of expression was generally dependent upon the viral titer present. Moreover, the CVB3-renilla strain was completely attenuated. Interestingly, the recombinant CVB3 vector was expressed much more strongly in mouse organs than was a comparable adenoviral vector. The CVB3-renilla strain did not express the renilla gene in mice with pre-existing coxsackievirus-specific neutralizing antibodies, but direct organ-specific administration of the virus during open-peritoneum surgery was able to circumvent this immunity. This coxsackievirus vector may represent a useful means for delivering and expressing foreign genes in mouse models in an acute and extensive fashion.

Cloning of Molecular Marker for Cultivar Protection and Transfer to Nicotiana tabacum L. (품종보호를 위한 분자 마커의 Cloning 및 담배로의 전이)

  • Ku, Ja Jung;Park, Young Doo;Choi, Geun Won
    • Horticultural Science & Technology
    • /
    • v.17 no.6
    • /
    • pp.770-772
    • /
    • 1999
  • This study was conducted to provide a basic system to develop a molecular marker for plant cultivar protection using a recombinant DNA technology. Using Nicotiana tabacum L. plants, the potentiality in the utilization of the developed marker was examined. After homology test with several plant genomes, mouse adenosine deaminase (ADA) gene was selected as DNA source of a molecular marker for cultivar protection. As a result of the digestion of ADA gene with BamHI and Pst I, six DNA fragments were obtained, and 513 bp DNA fragment among them was selected as a possible DNA marker for cultivar protection. Selected 513 bp DNA fragment was efficiently inserted into pBI101 plasmid vector for plant transformation by using phagemid vector pBluescript II SK (+/-) as an intermediate vector. The recombinant pBI101, carrying 513 bp DNA fragment, possible markers for cultivar protection, was transformed into A. tumefaciens LBA4404. Nicotiana tabacum was transformed with A. tumefaciens LBA4404 having the recombinant pBI101 and was confirmed the transfer of 513 bp DNA fragment, a possible molecular marker for cultivar protection.

  • PDF

Instability of pneumococcus library in pHC79 and pAcyc184

  • Rhee, Dong-Kwon
    • Archives of Pharmacal Research
    • /
    • v.18 no.1
    • /
    • pp.31-37
    • /
    • 1995
  • S. pneumoniae (pneumococcus) gene cloning and library construction in E. coli multicopy plasmid has been hampered, in part, by instability problems. In this study, stability of pneumococcus gene library in cosmid vector and pACYC184 was examined. Pneumococcus library in the cosmid vector pHC79 was extermely unstable that most of the recobinant clones were degenerated rapidly. Only 2 out 849 clones were stable and had appropriate insert size. Pneumococcus library in pACYC184 was also so unstable that the pneumococcal inserg and/or part of the vector were deleted. However, the instability problems seemed to be resolved when transcription teminator plasmid was employed for pneumococcus library construction.

  • PDF

Expression of Human KCNE1 Gene in Zebrafish (Zebrafish에서 인간 KCNE1 유전자 발현에 관한 연구)

  • Park, Hyeon Jeong;Yoo, Min
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.524-529
    • /
    • 2017
  • This study was aimed to produce a transgenic zebrafish expressing the human KCNE1 gene. Initially, the entire CDS of the human KCNE1 gene was amplified from a human genomic DNA sample by polymerase chain reaction using a primer set engineered with restriction enzyme sites (EcoRI, BamHI) at the 5' end of each primer. The resultant 402 bp KCNE1 amplicon flanked by EcoR1 and BamH1 was obtained and subsequently cloned into a plasmid vector pPB-CMVp-EF1-GreenPuro. The integrity of the cloned CDS sequence was confirmed by DNA sequencing analysis. Next, the recombinant vector containing the human KCNE1 (pPB-CMVp-hKCNE1-EF1-GreenPuro) was introduced into fertilized eggs of zebrafish by microinjection. Successful expression of the recombinant vector in the eggs was confirmed by the expression of the fluorescence protein encoded in the vector. Finally, in order to assure that the stable expression of the human KCNE1 gene occurred in the transgenic animal, RNAs were extracted from the animal and the presence of KCNE1 transcripts was confirmed by RT-PCT as well as DNA sequencing analysis. The study provides a methodology to construct a useful transgenic animal model applicable to the development of diagnostic technologies for gene therapy of LQTS (Long QT Syndrome) as well as tools for cloning of useful genes in fish.

The Production of Lunasin Peptide Using E. coli and P. pastoris, and Inhibitory Effect of Histone Acetylation (대장균과 효모를 이용한 lunasin peptide의 생산 및 histone acetylation 억제활성)

  • Park, Jae Ho;Park, Gwang Hun;Song, Hun Min;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • In this study, we produced the recombinant lunasin peptide using E. coli and P. pastoris, and evaluated biological activity of the recombinant lunasin peptide. Lunasin peptide was produced from E. coli transfected with pPGEX-lunasin expression vector and P. pastoris GS115 transfected with pPIC-lunasin expression vector. These recombinant lunasin peptides were similar to the synthetic lunasin peptide in the identification by LC-ESI-MS. In addition, the recombinant lunasin peptide from E. coli and P. pastoris was bound in the chromatin, and inhibited histone acetylation and the activity of histone acetyltransferase. These findings suggest that the production of the lunasin peptide using E. coli and P. pastoris will be useful for industrial utilization of lunasin peptide.

Development of Recombinant Coat Protein Antibody Based IC-RT-PCR and Comparison of its Sensitivity with Other Immunoassays for the Detection of Papaya Ringspot Virus Isolates from India

  • Sreenivasulu, M.;Gopal, D.V.R. Sai
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • Papaya ringspot virus (PRSV) causes the most widespread and devastating disease in papaya. Isolates of PRSV originating from different geographical regions in south India were collected and maintained on natural host papaya. The entire coat protein (CP) gene of Papaya ringspot virus-P biotype (PRSV-P) was amplified by RTPCR. The amplicon was inserted into pGEM-T vector, sequenced and sub cloned into a bacterial expression vector pRSET-A using a directional cloning strategy. The PRSV coat protein was over-expressed as a fusion protein in Escherichia coli. SDS-PAGE gel revealed that CP expressed as a ~40 kDa protein. The recombinant coat protein (rCP) fused with 6x His-tag was purified from E.coli using Ni-NTA resin. The antigenicity of the fusion protein was determined by western blot analysis using antibodies raised against purified PRSV. The purified rCP was used as an antigen to produce high titer PRSV specific polyclonal antiserum. The resulting antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) assay and compared its sensitivity levels with ELISA based assays for detection of PRSV isolates. IC-RT-PCR was shown to be the most sensitive test followed by dot-blot immunobinding assay (DBIA) and plate trapped ELISA.

Cloning of 17S-Ribosomal RNA Gene from the Hygromycin Resistant Tetrahymena thermophila (Hygromycin내성 Tetrahymena thermophila의 17S-Ribosomal RNA유전자의 Cloning)

  • 홍용기
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.133-137
    • /
    • 1986
  • 17S-ribosomal RNA gene from the hygromycin resistant protozoan Tetrahymena thermophila hmr 3 was cloned on E. coli vector pBR 322 as part of study to work the 17S-rRNA structure and the mechanism of hygromycin resistance. The 17S-rDNA was inserted into the Hind 111 site of pBR 322. The clones having recombinant plasmid were selected by the method of colony hybridization with a 17S-rDNA probe of wild type B1868. The orientation of 17S-rDNA insert was located near the tetracycline resistant gene of pBR 322 in a clone 5-19 with the recombinant plasmid.

  • PDF