Structural Analysis of Plasmid pCL2.1 from Lactococcus lactis ssp. lactis $ML_8$ and the Construction of a New Shuttle Vector for Lactic Acid Bacteria

  • Jeong, Do-Won (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Cho, San-Ho (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Lee, Hyong-Joo (Department of Agricultural Biotechnology, Seoul National University)
  • Published : 2009.04.30

Abstract

The nucleotide sequence contains 2 open reading frames encoding a 45-amino-acid protein homologous to a transcriptional repressor protein CopG, and a 203-amino-acid protein homologous to a replication protein RepB. Putative countertranscribed RNA, a double-strand origin, and a single-strand origin were also identified. A shuttle vector, pUCL2.1, for various lactic acid bacteria (LAB) was constructed on the basis of the pCL2.1 replicon, into which an erythromycin-resistance gene as a marker and Escherichia coli ColE1 replication origin were inserted. pUCL2.1 was introduced into E. coli, Lc. lactis, Lactobacillus (Lb.) plantarum, Lb. paraplantarum, and Leuconostoc mesenteroides. The recombinant LAB maintained traits of transformed plasmid in the absence of selection pressure over 40 generations. Therefore, pUCL2.1 could be used as an E. coli/LAB shuttle vector, which is an essential to engineer recombinant LAB strains that are useful for food fermentations.

Keywords

References

  1. Bengmark S, Martindale R. Prebiotics and synbiotics in clinical medicine. Nutr. Clin. Pract. 20: 244-261 (2005) https://doi.org/10.1177/0115426505020002244
  2. Shanahan F. Probiotics in inflammatory bowel disease--therapeutic rationale and role. Adv. Drug Deliver Rev. 56: 809-818 (2004) https://doi.org/10.1016/j.addr.2003.11.003
  3. Cotter PD, Hill C, Ross RP. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 3: 777-788 (2005) https://doi.org/10.1038/nrmicro1273
  4. Kim JY, Lee S, Jeong DW, Hachimura S, Kaminogawa S, Lee HJ. Effects of intraperitoneal administration of Lactococcus lactis ssp. lactis cellular fraction on immune response. Food Sci. Biotechnol. 14: 405-409 (2005)
  5. Kim JY, Lee S, Jeong DW, Hachimura S, Kaminogawa S, Lee HJ. In vivo immunopotentiating effects of cellular components from Lactococcus lactis ssp. lactis. J. Microbiol. Biotechn. 16: 786-790 (2006)
  6. Kim SY, Lee KW, Kim JY, Lee HJ. Cytoplasmic fraction of Lactococcus lactis ssp. lactis induces apoptosis in SNU-1 stomach adenocarcinoma cells. Biofactors 22: 119-122 (2004) https://doi.org/10.1002/biof.5520220123
  7. Arnau J, Hjerl-Hansen E, Israelsen H. Heterologous gene expression of bovine plasmin in Lactococcus lactis. Appl. Microbiol. Biotechnol. 48: 331-338 (1997) https://doi.org/10.1007/s002530051058
  8. Jeong DW, Hwang ES, Lee HJ. Food-grade expression and secretion system in Lactococcus. Food Sci. Biotechnol.15: 485-493 (2006)
  9. Pouwels PH, Leer RJ. Genetics of lactobacilli: Plasmids and gene expression. Anton. Leeuw. Int. J. G. 64: 85-107 (1993)
  10. Pouwels PH, Vriesema A, Martinez B, Tielen FJ, Seegers JF, Leer RJ, Jore J, Smit E. Lactobacilli as vehicles for targeting antigens to mucosal tissues by surface exposition of foreign antigens. Method Enzymol. 336: 369-389 (2001) https://doi.org/10.1016/S0076-6879(01)36602-8
  11. Ribeiro LA, Azevedo V, Le Loir Y, Oliveira SC, Dieye Y, Piard JC, Gruss A, Langella P. Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: A first step towards food-grade live vaccines against brucellosis. Appl. Environ. Microb. 68: 910-916 (2002) https://doi.org/10.1128/AEM.68.2.910-916.2002
  12. De Vos WM, Simons G. Gene cloning and expression systems in Lactococci. pp. 52-105. In: Genetics and Biotechnology of Lactic Acid Bacteria. Gasson MJ, De Vos WM (eds). Chapman and Hall, Glasgow, New Zealand (1994)
  13. De Vos WM, Hugenholtz J. Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol. 22: 72-79 (2004) https://doi.org/10.1016/j.tibtech.2003.11.011
  14. Nouaille S, Ribeiro LA, Miyoshi A, Pontes D, Le Loir Y, Oliveira SC, Langella P, Azevedo V. Heterologous protein production and delivery systems for Lactococcus lactis. Genet. Mol. Res. 2: 102-111 (2003)
  15. Khan SA. Plasmid rolling-circle replication: Highlights of two decades of research. Plasmid 53: 126-136 (2005) https://doi.org/10.1016/j.plasmid.2004.12.008
  16. Chang HC, Choi YD, Lee HJ. Nucleotide sequence of a plasmid pCL2.1 from Lactococcus lactis ssp. lactis ML8. Plasmid 34: 234-235 (1995) https://doi.org/10.1006/plas.1995.0010
  17. Coffey A, Harrington A, Kearney K, Daly C, Fitzgerald G. Nucleotide sequence and structural organization of the small, broadhost- range plasmid pCI411 from Leuconostoc lactis 533. Microbiology 140: 2263-2269 (1994) https://doi.org/10.1099/13500872-140-9-2263
  18. Gasson MJ. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 154: 1-9 (1983)
  19. Lee JH, Kim MJ, Jeong DW, Kim MJ, Kim JH, Chang HC, Chung DK, Kim HY, Kim KH, Lee HJ. Identification of bacteriocinproducing Lactobacillus paraplantarum-First isolated from kimchi. J. Microbiol. Biotechn. 15: 428-433 (2005)
  20. Kim TW, Lee JY, Jung SH, Kim YM, Jo JS, Chung DK, Lee HJ, Kim HY. Identification of lactic acid bacteria in kimchi using SDSPAGE profiles of whole cell proteins. J. Microbiol. Biotechn. 12:635-642 (2002)
  21. Simon D, Chopin A. Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie 70:559-566 (1988) https://doi.org/10.1016/0300-9084(88)90093-4
  22. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580 (1983) https://doi.org/10.1016/S0022-2836(83)80284-8
  23. Holo H, Nes IF. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microb. 55: 3119-3123 (1989)
  24. Roberts RC, Burioni R, Helinski DR. Genetic characterization of the stabilizing functions of a region of broad-host range plasmid RK2. J. Bacteriol. 172: 6204-6216 (1990) https://doi.org/10.1128/jb.172.11.6204-6216.1990
  25. Acebo P, Garcia de Lacoba M, Rivas G, Andreu JM, Espinosa M, del Solar G. Structural features of the plasmid pMV158-encoded transcriptional repressor CopG, a protein sharing similarities with both helix-turn-helix and beta-sheet DNA binding proteins. Proteins 32: 248-261 (1998) https://doi.org/10.1002/(SICI)1097-0134(19980801)32:2<248::AID-PROT11>3.0.CO;2-D
  26. Dodd IB, Egan JB. Improved detection of helix-turn-helix DNAbinding motifs in protein sequences. Nucleic Acids Res. 18: 5019-5026 (1990) https://doi.org/10.1093/nar/18.17.5019
  27. Alonso JC, Taylor RH. Initiation of plasmid pC194 replication and its control in Bacillus subtilis. Mol. Gen. Genet. 210: 476-484 (1987) https://doi.org/10.1007/BF00327200
  28. Tinoco I, Borer PN, Dengler B, Levin MD, Uhlenbeck OC, Crothers DM, Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nature-New Biol. 246: 40-41 (1973) https://doi.org/10.1038/newbio246040a0
  29. Boe L, Gros MF, te Riele H, Ehrlich SD, Gruss A. Replication origins of single-stranded-DNA plasmid pUB110. J. Bacteriol. 171:3366-3372 (1989) https://doi.org/10.1128/jb.171.6.3366-3372.1989
  30. Gruss AD, Ross HF, Novick RP. Functional analysis of a palindromic sequence required for normal replication of several staphylococcal plasmids. P. Natl. Acad. Sci. USA 84: 2165-2169 (1987) https://doi.org/10.1073/pnas.84.8.2165
  31. Kodaira K, Oki M, Taketo A, Yasukawa H, Masamune Y. Determination of the single strand origin of Shigella sonnei plasmid pKYM. Biochim. Biophys. Acta 1260: 183-190 (1995) https://doi.org/10.1016/0167-4781(94)00199-D
  32. Madsen SM, Andrup L, Boe L. Fine mapping and DNA sequence of replication functions of Bacillus thuringiensis plasmid pTX14-3. Plasmid 30: 119-130 (1993) https://doi.org/10.1006/plas.1993.1039
  33. Seegers JF, Zhao AC, Meijer WJ, Khan SA, Venema G, Bron S. Structural and functional analysis of the single-strand origin of replication from the lactococcal plasmid pWV01. Mol. Gen. Genet. 249: 43-50 (1995) https://doi.org/10.1007/BF00290234
  34. Novick RP. Staphylococcal plasmids and their replication. Annu. Rev. Microbiol. 43: 537-565 (1989) https://doi.org/10.1146/annurev.mi.43.100189.002541
  35. Del Solar GH, Puyet A, Espinosa M. Initiation signals for the conversion of single stranded to double stranded DNA forms in the streptococcal plasmid pLS1. Nucleic Acids Res. 15: 5561-5580 (1987) https://doi.org/10.1093/nar/15.14.5561
  36. Khan SA. Plasmid rolling-circle replication: Recent developments. Mol. Microbiol. 37: 477-484 (2000)