Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.5.524

Expression of Human KCNE1 Gene in Zebrafish  

Park, Hyeon Jeong (Department of Biological Sciences, Keimyung University)
Yoo, Min (Department of Biological Sciences, Keimyung University)
Publication Information
Journal of Life Science / v.27, no.5, 2017 , pp. 524-529 More about this Journal
Abstract
This study was aimed to produce a transgenic zebrafish expressing the human KCNE1 gene. Initially, the entire CDS of the human KCNE1 gene was amplified from a human genomic DNA sample by polymerase chain reaction using a primer set engineered with restriction enzyme sites (EcoRI, BamHI) at the 5' end of each primer. The resultant 402 bp KCNE1 amplicon flanked by EcoR1 and BamH1 was obtained and subsequently cloned into a plasmid vector pPB-CMVp-EF1-GreenPuro. The integrity of the cloned CDS sequence was confirmed by DNA sequencing analysis. Next, the recombinant vector containing the human KCNE1 (pPB-CMVp-hKCNE1-EF1-GreenPuro) was introduced into fertilized eggs of zebrafish by microinjection. Successful expression of the recombinant vector in the eggs was confirmed by the expression of the fluorescence protein encoded in the vector. Finally, in order to assure that the stable expression of the human KCNE1 gene occurred in the transgenic animal, RNAs were extracted from the animal and the presence of KCNE1 transcripts was confirmed by RT-PCT as well as DNA sequencing analysis. The study provides a methodology to construct a useful transgenic animal model applicable to the development of diagnostic technologies for gene therapy of LQTS (Long QT Syndrome) as well as tools for cloning of useful genes in fish.
Keywords
Fluorescence protein; KCNE1; LQTS; microinjection; zebrafish;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Amsterdam, A., Burgess, S., Golling, G., Chen, W., Sun, Z., Townsend, K., Farrington, S., Haldi, M. and Hopkins, N. 1999. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev. 13, 2713-2724.   DOI
2 Axelrod, H. R. and Schulz, L. P. 1955. A handbook of tropical aquarium fishes. McGraw-Hill Book co. 271.
3 Bhimachar, B. S. and Subra Rau, A. 1941. The Fishes of Mysore State. I. fishes of Kadur District. Half-yearly J. 1, 141-153.
4 Busch-Nentwich, E., Sollner, C., Roehl, H. and Nicolson, T. 2004. The deafness gene dfna5 is crucial for ugdh expression and HA production in the developing ear in zebrafish. Development 131, 943-951.   DOI
5 Cho S. W., Park, H. J., Kim, G. Y., Nam, M. K., Kim, H. Y. Ko, I., Kim, C. H. and Rhim, H. 2006. Establishment of the expression system of human HtrA2 in the zebrafish. J. Life Sci. 16, 571-578.   DOI
6 Chrenek, P., Chrastinova, L., Kirchnerova, K., Makarevich, A. V. and Foltys, V. 2007. The yield and composition of milk from transgenic rabbits. Asian-Australasian J. Anim. Sci. 20, 482-486.   DOI
7 Ding, S., Wu, X., Li, G., Han, M., Zhuang, Y. and Xu, T. 2005. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122, 473-483.   DOI
8 Driever, W., Stemple, D., Schier, A. and Solnica-Krezel, L. 1994. Zebrafish: genetic tools for studying vertebrate development. Trends Genet. 10, 152-159.   DOI
9 Geelen, J. L., Doevendans, P. A., Jongbloed, R. J. E., Wellens, H. J. J. and Geraedts, J. P. M. 1998. Molecular genetics of inherited long QT syndromes. Eur. Heart J. 19, 1427-1433.   DOI
10 Gibbs, P. D. and Schmale, M. C. 2000. GFP as a genetic marker scorable throughout the life cycle of transgenic zebrafish. Biotechnology 2, 107-125.
11 Hirao, H., Shimizu, W., Kurita, T., Suyama, K., Aihara, N., Kamakura, S. and Shimomura, K. 1996. Frequency-dependent electrophysiologic properties of ventricular repolarization in patients with congenital long QT syndrome. J. Amer. Coll Cardiol. 28, 1269-1277.   DOI
12 Hisaoka, K. K. and Firlit, C. F. 1962. The embryology of the blue gourami, Trichogaster trichopterus (Pallas). J. Mor. 3, 239-253.
13 Huang, H., Ju, B., Lee, K. Y. and Lin, S. 2004. The zebrafish: genetics, genomics and informatics. Methods Cell Biol. 77, 403-411.
14 Jackman, W., Friday, K. and Anderson. 1988. The long QT syndromes: A critical review, new clinical observations and a unifying hypothesis. Prog Cardiovasc Dis. 31, 115-172.   DOI
15 Splawski, I., Jiaxiang, S., Katherine, W. T., Michael, G. V., Michael, H. L. and Mark, T. K. 1998. Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1. Genomics 51, 86-97.   DOI
16 Kato, M., Yamanouchi, K., Ikawa, M., Okabe, M., Naito, K. and Tojo, H. 1999. Efficient selection of transgenic mouse embryos using EGFP as a marker gene. Mol. Reprod. 54, 43-48.   DOI
17 Keating, M. T. 1996. The long QT syndrome. A review of recent molecular genetic and physiologic discoveries. Medicine 75, 1-5.   DOI
18 Koo, S. H., Woom, F. H. and Demund, J. D. L. 2006. Genetic polymorphisms in KCNE1, HERG, KCNE1 and KCNE2 genes in the Chises, Malay and Indian populations of Singapore. Br. J. Clin Pharmacol. 61, 301-308.   DOI
19 Park, J. K., Jeon, I. S., Lee, Y. K., Lee, P. Y., Kim, S. W., Kim, S. J., Lee, H. G., Han, J. H. and Park, C. G. 2003. Increased of the red blood cell in peripheral plasma of transgenic pigs harboring hEPO gene. Reprod. Dev. Biol. 27, 317-24.
20 Patton, E. E. and Zon, L. I. 2001. The art and design of genetic screens: zebrafish. Nat. Rev. Genet. 2, 956-966.   DOI
21 Viskin, S., Alla, S. R. and Barron, H. V. 1996. Mode of onset of torsade de pointes in congenital long QT syndrome. J. Amer. Coll Cardiol. 28, 1262.   DOI
22 Yeo, S. I., Kim, S. W., Kim, Y. N., You, K. H., Shin, S. W., Kim, M. H., Song, J. C. and Yoo, M. 2002. Complete nucleotide sequence of KCNE1 in Korean genome. J. Exp. Biomed. Sci. 8, 185-188.