• Title/Summary/Keyword: Recombinant laccase

Search Result 10, Processing Time 0.023 seconds

Cloning and expression of new laccase gene (soncotA) from Bacillus sonorensis KCTC13918 in E. coli (Bacillus sonorensis KCTC13918로부터 새로운 laccase유전자 (soncotA)의 클로닝과 대장균에서의 발현)

  • Choi, Shin-Geon;Yoon, Hyeonjong
    • Journal of Industrial Technology
    • /
    • v.37 no.1
    • /
    • pp.16-20
    • /
    • 2017
  • A new putative laccase gene (soncotA) which show 78% homology with that from Bacillus licheniformis (liccotA) was isolated from draft genome sequence of Bacillus sonorensis KCTC 13918. A 1,545 bp of PCR product corresponding 514 amino acids was cloned into NdeI-NotI site of pET21c and expressed as soluble form in E. coli. About 59 kDa size of recombinant laccase was purified into homogenity by Ni-NTA column and laccase activity was confirmed by zymography. The enzymatic properties of recombinant laccase were characterized. The specific activity of B. sonorensis laccase was 0.033 fold lower than that of Bacillus licheniformis laccase. The finding of new laccase gene broadened the enzymatic diversity of Bacillus species laccases.

Production of a Recombinant Laccase from Pichia pastoris and Biodegradation of Chlorpyrifos in a Laccase/Vanillin System

  • Xie, Huifang;Li, Qi;Wang, Minmin;Zhao, Linguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.864-871
    • /
    • 2013
  • The recombinant strain P. pastoris GS115-lccC was used to produce laccase with high activity. Factors influencing laccase expression, such as pH, methanol concentration, copper concentration, peptone concentration, shaker rotate speed, and medium volume were investigated. Under the optimal conditions, laccase activity reached 12,344 U/L on day 15. The recombinant enzyme was purified by precipitating and dialyzing to electrophoretic homogeneity, and was estimated to have a molecular mass of about 58 kDa. When guaiacol was the substrate, the laccase showed the highest activity at pH 5.0 and was stable when the pH was 4.5~6.0. The optimal temperature for the laccase to oxidize guaiacol was $60^{\circ}C$, but it was not stable at high temperature. The enzyme could remain stable at $30^{\circ}C$ for 5 days. The recombinant laccase was used to degrade chlorpyrifos in several laccase/mediator systems. Among three synthetic mediators (ABTS, HBT, VA) and three natural mediators (vanillin, 2,6-DMP, and guaiacol), vanillin showed the most enhancement on degradation of chlorpyrifos. Both laccase and vanillin were responsible for the degradation of chlorpyrifos. A higher dosage of vanillin may promote a higher level of degradation of chlorpyrifos, and the 2-step addition of vanillin led to 98% chlorpyrifos degradation. The degradation of chlorpyrifos was faster in the L/V system ($k_{obs}$ = 0.151) than that in the buffer solution ($k_{obs}$ = 0.028).

Increase of Yeast Survival under Oxidative Stress by the Expression of the Laccase Gene from Coprinellus congregatus

  • Kim, Dong-Sik;Kwak, Eun-Jung;Choi, Hyoung-T.
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.617-621
    • /
    • 2006
  • Coprinellus congregatus secreted a laccase isozyme when the culture was transferred to an acidic liquid medium (pH 4.1). The laccase cDNA gene (clac2) was used as a probe for cloning of the genomic laccase gene (lac2) including the promoter (Plac2). The open reading frame (ORF) of lac2 had 526 deduced amino acids and four conserved copper binding domains as other fungal laccases. Recombinant plasmid (pRSlac2p-cDNA) of lac2 cDNA with its own promoter was transformed in Saccharomyces cerevisiae. Expression of the transformed lac2 gene was induced by oxidative stress ($H_2O_2$) in yeast and the survival rate of the transformed yeast strain was greatly increased when compared with that of the control strain transformed with pRS316 yeast vector.

Expression of laccase in transgenic tobacco chloroplasts (엽록체형질전환을 이용한 담배에서의 laccase 유전자의 발현)

  • Yoo, Byung-Ho;Lim, Jong-Min;Woo, Je-Wook;Choi, Dong-Woog;Kim, Sun-Ha;Choi, Kwan-Sam;Liu, Jang-Ryol;Ko, Suk-Min
    • Journal of Plant Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.41-45
    • /
    • 2008
  • Laccase (EC 1.10.3.2) is a small group of enzymes that catalyze the oxidation of a broad range of phenolic compounds including hazardous and recalcitrant pollutants in the environment. This study attempted to develop an efficient system for production of a recombinant laccase by chloroplast genetic transformation of tobacco. Chloroplast transformation vector was constructed and introduced into the tobacco chloroplast genome using particle bombardment. Chloroplast-transformed plants were subsequently regenerated. PCR and southern blot analyses confirmed stable integration of the laccase gene into the chloroplast genome. Northern blot analysis revealed that mRNA of the laccase gene was highly expressed in chloroplast-transformed plants.

Gene Cloning and Enzymatic Properties of Thermostable Laccase from Thermus thermophilus HJ6 (Thermus thermophilus HJ6 유래 내열성 laccase의 유전자 클로닝 및 효소학적 특성)

  • Lee, So-Young;Jung, Young-Hoon;Seo, Min-Ho;Jeon, Sung-Jong
    • KSBB Journal
    • /
    • v.27 no.4
    • /
    • pp.257-262
    • /
    • 2012
  • The gene encoding Thermus thermophilus HJ6 laccase (Tt-laccase) was cloned, sequenced, and comprised of 1,389 nucleotides encoding a protein (462 amino acids) with a predicted molecular mass of 51,049 Da. The deduced amino acid sequence of Tt-laccase showed 99.7% and 44.3% identities to the Thermus thermophilus HB27 laccase and Synechococcus sp. RS9917 laccase, respectively. Tt-laccase gene was expressed as a fusion protein with six histidine residues in E. coli Rosetta-gami (DE3) cells, and the recombinant protein was purified to homogeneity. UV-Vis spectrum analysis revealed that the enzyme has copper atoms, a type I Cu(II) and a type III binuclear Cu(II). The optimum pH for the oxidation of guaiacol was 5.0 and the optimum temperature was $90^{\circ}C$ The half-life of heat inactivation was about 120 min at $90^{\circ}C$ The enzyme reaction was inhibited by sodium azide, L-cystein, EDTA, dithiothreitol, tropolone, and kojic acid. The enzyme oxidized various known laccase substrates, its lowest $K_m$ value being for 4-hydroxyindole, highest $k_{cat}$ value for syringaldazine, and highest $k_{cat}/K_m$ for guaiacol.

Heterologous Expression and Characterization of a Laccase from Laccaria bicolor in Pichia pastoris and Arabidopsis thaliana

  • Wang, Bo;Yan, Ying;Xu, Jing;Fu, Xiaoyan;Han, Hongjuan;Gao, Jianjie;Li, Zhenjun;Wang, Lijuan;Tian, Yongsheng;Peng, Rihe;Yao, Quanhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2057-2063
    • /
    • 2018
  • Laccases can oxidize a variety of phenolic and non-phenolic substrates including synthetic dyes. In this research, a laccase gene Lcc9 from Laccaria bicolor was chemically synthesized and optimized to heterogeneous expression in Pichia pastoris and Arabidopsis thaliana. The properties of recombinant laccase expressed by P. pastoris were investigated. The laccase activity was optimal at 3.6 pH and $40^{\circ}C$. It exhibited $K_m$ and $V_{max}$ values of $0.565mmol\;l^{-1}$ and $1.51{\mu}mol\;l^{-1}\;min^{-1}$ for ABTS respectively. As compared with untransformed control plants, the laccase activity in crude extracts of transgenic lines exhibited a 5.4 to 12.4-fold increase. Both laccases expressed in transgenic P. pastoris or A. thaliana could decolorize crystal violet. These results indicated that L. bicolor laccase gene may be transgenically exploited in fungi or plants for dye decolorization.

Optimization of Growth Medium and Fermentation Conditions for the Production of Laccase3 from Cryphonectria parasitica Using Recombinant Saccharomyces cerevisiae

  • Jeong, Yong-Seob;Sob, Kum-Kang;Lee, Ju-Hee;Kim, Jung-Mi;Chun, Gie-Taek;Chun, Jeesun;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.512-520
    • /
    • 2019
  • Statistical experimental methods were used to optimize the medium for mass production of a novel laccase3 (Lac3) by recombinant Saccharomyces cerevisiae TYEGLAC3-1. The basic medium was composed of glucose, casamino acids, yeast nitrogen base without amino acids (YNB w/o AA), tryptophan, and adenine. A one-factor-at-a-time approach followed by the fractional factorial design identified galactose, glutamic acid, and ammonium sulfate, as significant carbon, nitrogen, and mineral sources, respectively. The steepest ascent method and response surface methodology (RSM) determined that the optimal medium was (g/L): galactose, 19.16; glutamic acid, 5.0; and YNB w/o AA, 10.46. In this medium, the Lac3 activity (277.04 mU/mL) was 13.5 times higher than that of the basic medium (20.50 mU/mL). The effect of temperature, pH, agitation (rpm), and aeration (vvm) was further examined in a batch fermenter. The best Lac3 activity was 1176.04 mU/mL at 25 ℃, pH 3.5, 100 rpm, and 1 vvm in batch culture.

Comparison of Two Laccases from Trametes versicolor for Application in the Decolorization of Dyes

  • Li, Qi;Ge, Lin;Cai, Junli;Pei, Jianjun;Xie, Jingcong;Zhao, Linguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.545-555
    • /
    • 2014
  • It has been previously demonstrated that laccases exhibit great potential for use in several industrial and environmental applications. In this paper, two laccase isoenzyme genes, lccB and lccC, were cloned and expressed in Pichia pastoris GS115. The sequence analysis indicated that the lccB and lccC genes consisted of 1,563 and 1,584 bp, and their open reading frames encoded 520 and 527 amino acids, respectively. They had 72.7% degree of identity in nucleotides and 86.7% in amino acids. The expression levels of LccB and LccC were up to 32,479 and 34,231 U/l, respectively. The recombinant laccases were purified by ultrafiltration and $(NH_4)_2SO_4$ precipitation, showing a single band on SDS-PAGE, which had a molecular mass of 58 kDa. The optimal pH and temperature for LccB were 2.0 and $55^{\circ}C$ with 2,2'-azinobis-[ 3-ethylbenzthiazolinesulfonic acid (ABTS) as a substrate, whereas LccC exhibited optimal pH and temperature at 3.0 and $60^{\circ}C$. The apparent kinetic parameters of LccB were 0.43 mM for ABTS with a $V_{max}$ value of 51.28 U/mg, and the Km and $V_{max}$ values for LccC were 0.29 mM and 62.89 U/mg. The recombinant laccases were able to decolorize five types of dyes. Acid Violet 43 (100 g/ml) was completely decolorized by LccB or LccC (2 U/ml), and the decolorization of Reactive Blue KN-R (100 g/ml) was 91.6% by LccC (2 U/ml). Thus, the study characterizes useful laccase isoenzymes from T. versicolor that have the capability of being incorporated into the treatment of similar azo and anthraquinone dyes from dyeing industries.

Differential Expression of Laccase Genes in Pleurotus ostreatus and Biochemical Characterization of Laccase Isozymes Produced in Pichia pastoris

  • Park, Minsa;Kim, Minseek;Kim, Sinil;Ha, Byeongsuk;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.280-287
    • /
    • 2015
  • In this study, transcriptome analysis of twelve laccase genes in Pleurotus ostreatus revealed that their expression was differentially regulated at different developmental stages. Lacc5 and Lacc12 were specifically expressed in fruiting bodies and primordia, respectively, whereas Lacc6 was expressed at all developmental stages. Lacc1 and Lacc3 were specific to the mycelial stage in solid medium. In order to investigate their biochemical characteristics, these laccases were heterologously expressed in Pichia pastoris using the pPICHOLI-2 expression vector. Expression of the laccases was facilitated by intermittent addition of methanol as an inducer and sole carbon source, in order to reduce the toxic effects associated with high methanol concentration. The highest expression was observed when the recombinant yeast cells were grown for 5 days at $15^{\circ}C$ with intermittent addition of 1% methanol at a 12-hr interval. Investigation of enzyme kinetics using 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) as a substrate revealed that the primordium-specific laccase Lacc12 was 5.4-fold less active than Lacc6 at low substrate concentration with respect to ABTS oxidation activity. The optimal pH and temperature of Lacc12 were 0.5 pH units and $5^{\circ}C$higher than those of Lacc6. Lacc12 showed maximal activity at pH 3.5 and $50^{\circ}C$, which may reflect the physiological conditions at the primordiation stage.

Decolorization of Acid Green 25 by Surface Display of CotA laccase on Bacillus subtilis Spores

  • Park, Jong-Hwa;Kim, Wooil;Lee, Yong-Suk;Kim, June-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1383-1390
    • /
    • 2019
  • In this study, we expressed cotA laccase from Bacillus subtilis on the surface of B. subtilis spores for efficient decolorization of synthetic dyes. The cotE, cotG, and cotY genes were used as anchoring motifs for efficient spore surface display of cotA laccase. Moreover, a $His_6$ tag was inserted at the C-terminal end of cotA for the immunological detection of the expressed fusion protein. Appropriate expression of the CotE-CotA (74 kDa), CotG-CotA (76 kDa), and CotY-CotA (73 kDa) fusion proteins was confirmed by western blot. We verified the surface expression of each fusion protein on B. subtilis spore by flow cytometry. The decoloration rates of Acid Green 25 (anthraquinone dye) for the recombinant DB104 (pSDJH-EA), DB104 (pSDJH-GA), DB104 (pSDJH-YA), and the control DB104 spores were 48.75%, 16.12%, 21.10%, and 9.96%, respectively. DB104 (pSDJH-EA) showed the highest decolorization of Acid Green 25 and was subsequently tested on other synthetic dyes with different structures. The decolorization rates of the DB104 (pSDJH-EA) spore for Acid Red 18 (azo dye) and indigo carmine (indigo dye) were 18.58% and 43.20%, respectively. The optimum temperature for the decolorization of Acid Green 25 by the DB104 (pSDJH-EA) spore was found to be $50^{\circ}C$. Upon treatment with known laccase inhibitors, including EDTA, SDS, and $NaN_3$, the decolorization rate of Acid Green 25 by the DB104 (pSDJH-EA) spore decreased by 23%, 80%, and 36%, respectively.