DOI QR코드

DOI QR Code

Production of a Recombinant Laccase from Pichia pastoris and Biodegradation of Chlorpyrifos in a Laccase/Vanillin System

  • Xie, Huifang (Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology) ;
  • Li, Qi (College of Chemical Engineering, Nanjing Forestry University) ;
  • Wang, Minmin (College of Chemical Engineering, Nanjing Forestry University) ;
  • Zhao, Linguo (College of Chemical Engineering, Nanjing Forestry University)
  • Received : 2012.12.26
  • Accepted : 2013.03.04
  • Published : 2013.06.28

Abstract

The recombinant strain P. pastoris GS115-lccC was used to produce laccase with high activity. Factors influencing laccase expression, such as pH, methanol concentration, copper concentration, peptone concentration, shaker rotate speed, and medium volume were investigated. Under the optimal conditions, laccase activity reached 12,344 U/L on day 15. The recombinant enzyme was purified by precipitating and dialyzing to electrophoretic homogeneity, and was estimated to have a molecular mass of about 58 kDa. When guaiacol was the substrate, the laccase showed the highest activity at pH 5.0 and was stable when the pH was 4.5~6.0. The optimal temperature for the laccase to oxidize guaiacol was $60^{\circ}C$, but it was not stable at high temperature. The enzyme could remain stable at $30^{\circ}C$ for 5 days. The recombinant laccase was used to degrade chlorpyrifos in several laccase/mediator systems. Among three synthetic mediators (ABTS, HBT, VA) and three natural mediators (vanillin, 2,6-DMP, and guaiacol), vanillin showed the most enhancement on degradation of chlorpyrifos. Both laccase and vanillin were responsible for the degradation of chlorpyrifos. A higher dosage of vanillin may promote a higher level of degradation of chlorpyrifos, and the 2-step addition of vanillin led to 98% chlorpyrifos degradation. The degradation of chlorpyrifos was faster in the L/V system ($k_{obs}$ = 0.151) than that in the buffer solution ($k_{obs}$ = 0.028).

Keywords

References

  1. Amitai, G., R. Adani, G. Sod-Moriah, I. Rabinovitz, A. Vincze, H. Leader, et al. 1998. Oxidative biodegradation of phosphorothiolates by fungal laccase. FEBS Lett. 438: 195-200. https://doi.org/10.1016/S0014-5793(98)01300-3
  2. Barneto, A. G., E. Aracri, G. Andreu, and T. Vidal. 2012. Investigating the structure-effect relationships of various natural phenols used as laccase mediators in the biobleaching of kenaf and sisal pulps. Bioresour. Technol. 112: 327-335. https://doi.org/10.1016/j.biortech.2012.02.136
  3. Bourbonnais, R. and M. G. Paice. 1990. Oxidation of nonphenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 267: 99-102. https://doi.org/10.1016/0014-5793(90)80298-W
  4. Claus, H. 2004. Laccases: Structure, reactions, distribution. Micron 35: 93-96. https://doi.org/10.1016/j.micron.2003.10.029
  5. Coppola, L., Maria d. P. Castillo, E. Monaci, and C. Vischetti. 2007. Adaptation of the biobed composition for chlorpyrifos degradation to Southern Europe conditions. J. Agric. Food Chem. 55: 396-401. https://doi.org/10.1021/jf062744n
  6. Díaz González, M., T. Vidal, and T. Tzanov. 2009. Electrochemical study of phenolic compounds as enhancers in laccase-catalyzed oxidative reactions. Electroanalysis 21: 2249-2257. https://doi.org/10.1002/elan.200904678
  7. Daly, R. and M. T. W. Hearn 2005. Expression of heterologous proteins in Pichia pastoris: A useful experimental tool in protein engineering and production. J. Mol. Recognit. 18: 119-138. https://doi.org/10.1002/jmr.687
  8. He, L. Y., G. B. Wang, F. L. Cao, and L. G. Zhao. 2011. Cloning of laccase gene from Coriolus versicolor and optimization of culture conditions for lcc1 expression in Pichia pastoris. Adv. Mat. Res. 236: 1039-1044.
  9. Hoshida, H., T. Fujita, K. Murata, K. Kubo, and R. Akada. 2005. Copper-dependent production of a Pycnoporus coccineus extracellular laccase in Aspergillus oryzae and Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 69: 1090-1097. https://doi.org/10.1271/bbb.69.1090
  10. Jönsson, L. J., M. Saloheimo, and M. Penttilä. 1997. Laccase from the white-rot fungus Trametes versicolor: cDNA cloning of lcc1 and expression in Pichia pastoris. Curr. Genet. 32: 425-430. https://doi.org/10.1007/s002940050298
  11. Kang, K. H., J. Dec, H. Park, and J. M. Bollag. 2002. Transformation of the fungicide cyprodinil by a laccase of Trametes villosa in the presence of phenolic mediators and humic acid. Water Res. 36: 4907-4915. https://doi.org/10.1016/S0043-1354(02)00198-7
  12. Khatri, N. K. and F. Hoffmann. 2005. Impact of methanol concentration on secreted protein production in oxygen-limited cultures of recombinant Pichia pastoris. Biotechnol. Bioeng. 93: 871-879.
  13. Khlifi-Slama, R., T. Mechichi, S. Sayadi, and A. Dhouib. 2012. Effect of natural mediators on the stability of Trametes trogii laccase during the decolourization of textile wastewaters. J. Microbiol. 50: 226-234. https://doi.org/10.1007/s12275-012-1421-1
  14. Kulshrestha, G. and A. Kumari. 2011. Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil. Biol. Fertil. Soils 47: 219-225. https://doi.org/10.1007/s00374-010-0505-5
  15. Kurniawati, S. and J. A. Nicell. 2007. Efficacy of mediators for enhancing the laccase-catalyzed oxidation of aqueous phenol. Enzyme Microb. Technol. 41: 353-361. https://doi.org/10.1016/j.enzmictec.2007.03.003
  16. Li, K., F. Xu, and K. E. L. Eriksson. 1999. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl. Environ. Microbiol. 65: 2654-2660.
  17. Li, M., G. Zhang, H. Wang, and T. Ng. 2010. Purification and characterization of a laccase from the edible wild mushroom Tricholoma mongolicum. J. Microbiol. Biotechnol. 20: 1069-1075. https://doi.org/10.4014/jmb.0912.12033
  18. Lu, L., M. Zhao, S. C. Liang, L. Y. Zhao, D. B. Li, and B. B. Zhang. 2009. Production and synthetic dyes decolourization capacity of a recombinant laccase from Pichia pastoris. J. Appl. Microbiol. 107: 1149-1156. https://doi.org/10.1111/j.1365-2672.2009.04291.x
  19. Macauley-Patrick, S., M. L. Fazenda, B. McNeil, and L. M. Harvey. 2005. Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249-270. https://doi.org/10.1002/yea.1208
  20. Maruyama, T., C. Komatsu, J. Michizoe, S. Sakai, and M. Goto. 2007. Laccase-mediated degradation and reduction of toxicity of the postharvest fungicide imazalil. Process Biochem. 42: 459-461. https://doi.org/10.1016/j.procbio.2006.09.011
  21. Morozova, O. V., G. P. Shumakovich, S. V. Shleev, and Y. I. Yaropolov. 2007. Laccase-mediator systems and their applications: A review. Appl. Biochem. Microbiol. 43: 523-535. https://doi.org/10.1134/S0003683807050055
  22. Park, K. M. and S. S. Park. 2008. Purification and characterization of laccase from basidiomycete Fomitella fraxinea. J. Microbiol. Biotechnol. 18: 670-675.
  23. Pizzul, L., M. P. Castillo, and J. Stenstrom. 2009. Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation 20: 751-759. https://doi.org/10.1007/s10532-009-9263-1
  24. Strong, P. and H. Claus. 2011. Laccase: A review of its past and its future in bioremediation. Crit. Rev. Environ. Sci. Technol. 41: 373-434. https://doi.org/10.1080/10643380902945706
  25. Tanaka, T., M. Takahashi, H. Hagino, S. I. Nudejima, H. Usui, T. Fujii, and M. Taniguchi. 2010. Enzymatic oxidative polymerization of methoxyphenols. Chem. Eng. Sci. 65: 569-573. https://doi.org/10.1016/j.ces.2009.05.041

Cited by

  1. Kinetic Evidence for the Interactive Inhibition of Laccase from Trametes versicolor by pH and Chloride vol.24, pp.12, 2013, https://doi.org/10.4014/jmb.1408.08012
  2. Gene Cloning, High-Level Expression, and Characterization of an Alkaline and Thermostable Lipase from Trichosporon coremiiforme V3 vol.25, pp.6, 2013, https://doi.org/10.4014/jmb.1408.08039
  3. Computational Analysis and Low-Scale Constitutive Expression of Laccases Synthetic Genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris vol.10, pp.1, 2013, https://doi.org/10.1371/journal.pone.0116524
  4. The trade-off of availability and growth inhibition through copper for the production of copper-dependent enzymes by Pichia pastoris vol.16, pp.None, 2016, https://doi.org/10.1186/s12896-016-0251-3
  5. Simultaneous laccase production and transformation of bisphenol-A and triclosan using Trametes versicolor vol.9, pp.4, 2013, https://doi.org/10.1007/s13205-019-1648-1
  6. Cloning, Overexpression, and Characterization of a Thermostable, Organic Solvent-Tolerant Laccase from Bacillus pumilus ARA and Its Application to Dye Decolorization vol.6, pp.14, 2013, https://doi.org/10.1021/acsomega.1c00370