Browse > Article
http://dx.doi.org/10.5941/MYCO.2015.43.3.280

Differential Expression of Laccase Genes in Pleurotus ostreatus and Biochemical Characterization of Laccase Isozymes Produced in Pichia pastoris  

Park, Minsa (Division of Applied Life Science and Research Institute of Life Sciences, Gyeongsang National University)
Kim, Minseek (Division of Applied Life Science and Research Institute of Life Sciences, Gyeongsang National University)
Kim, Sinil (Division of Applied Life Science and Research Institute of Life Sciences, Gyeongsang National University)
Ha, Byeongsuk (Division of Applied Life Science and Research Institute of Life Sciences, Gyeongsang National University)
Ro, Hyeon-Su (Division of Applied Life Science and Research Institute of Life Sciences, Gyeongsang National University)
Publication Information
Mycobiology / v.43, no.3, 2015 , pp. 280-287 More about this Journal
Abstract
In this study, transcriptome analysis of twelve laccase genes in Pleurotus ostreatus revealed that their expression was differentially regulated at different developmental stages. Lacc5 and Lacc12 were specifically expressed in fruiting bodies and primordia, respectively, whereas Lacc6 was expressed at all developmental stages. Lacc1 and Lacc3 were specific to the mycelial stage in solid medium. In order to investigate their biochemical characteristics, these laccases were heterologously expressed in Pichia pastoris using the pPICHOLI-2 expression vector. Expression of the laccases was facilitated by intermittent addition of methanol as an inducer and sole carbon source, in order to reduce the toxic effects associated with high methanol concentration. The highest expression was observed when the recombinant yeast cells were grown for 5 days at $15^{\circ}C$ with intermittent addition of 1% methanol at a 12-hr interval. Investigation of enzyme kinetics using 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) as a substrate revealed that the primordium-specific laccase Lacc12 was 5.4-fold less active than Lacc6 at low substrate concentration with respect to ABTS oxidation activity. The optimal pH and temperature of Lacc12 were 0.5 pH units and $5^{\circ}C$higher than those of Lacc6. Lacc12 showed maximal activity at pH 3.5 and $50^{\circ}C$, which may reflect the physiological conditions at the primordiation stage.
Keywords
Heterologous expression; Laccase; Mushroom; Primordia;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wang Y, Chantreau M, Sibout R, Hawkins S. Plant cell wall lignification and monolignol metabolism. Front Plant Sci 2013;4:220.
2 Soares A, Jonasson K, Terrazas E, Guieysse B, Mattiasson B. The ability of white-rot fungi to degrade the endocrinedisrupting compound nonylphenol. Appl Microbiol Biotechnol 2005;66:719-25.   DOI
3 Majcherczyk A, Johannes C, Huttermann A. Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol 1998;22:335-41.   DOI
4 Park JW, Kang HW, Ha BS, Kim SI, Kim S, Ro HS. Strain-dependent response to $Cu^{2+}$ in the expression of laccase in Pycnoporus coccineus. Arch Microbiol 2015;197:589-96.   DOI
5 Kang HW, Yang YH, Kim SW, Kim S, Ro HS. Decolorization of triphenylmethane dyes by wild mushrooms. Biotechnol Bioprocess Eng 2014;19:519-25.   DOI
6 Reid ID. Biological pulping in paper manufacture. Trends Biotechnol 1991;9:262-5.   DOI
7 Muller M, Shi C. Laccase for denim processing. AATCC Rev 2001;1:4-5.
8 Riva S. Laccases: blue enzymes for green chemistry. Trends Biotechnol 2006;24:219-26.   DOI
9 Minson M, Meredith MT, Shrier A, Giroud F, Hickey D, Glatzhofer DT, Minteer SD. High performance glucose/$O_2$ biofuel cell: effect of utilizing purified laccase with anthracenemodified multi-walled carbon nanotubes. J Electrochem Soc 2012;159:G166-70.   DOI
10 Nagai M, Kawata M, Watanabe H, Ogawa M, Saito K, Takesawa T, Kanda K, Sato T. Important role of fungal intracellular laccase for melanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology 2003;149(Pt 9):2455-62.   DOI
11 Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 2003;38:143-58.   DOI
12 Eggert C, Temp U, Dean JF, Eriksson KE. Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid. FEBS Lett 1995;376:202-6.   DOI
13 Baldrian P. Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiol Ecol 2004;50:245-53.   DOI
14 Alberts JF, Gelderblom WC, Botha A, Van Zyl WH. Degradation of aflatoxin B1 by fungal laccase enzymes. Int J Food Microbiol 2009;135:47-52.   DOI
15 Kues U, Ruhl M. Multiple multi-copper oxidase gene families in basidiomycetes: what for? Curr Genomics 2011;12:72-94.   DOI
16 Saparrat M, Balatti PA, Martinez MJ, Jurado M. Differential regulation of laccase gene expression in Coriolopsis rigida LPSC No. 232. Fungal Biol 2010;114:999-1006.   DOI
17 Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martinez AT, Otillar R, Spatafora JW, Yadav JS, et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 2012;336:1715-9.   DOI
18 Dekker RF, Barbosa AM, Giese EC, Godoy SD, Covizzi LG. Influence of nutrients on enhancing laccase production by Botryosphaeria rhodina MAMB-05. Int Microbiol 2007;10:177-85.
19 Tong P, Hong Y, Xiao Y, Zhang M, Tu X, Cui T. High production of laccase by a new basidiomycete, Trametes sp. Biotechnol Lett 2007;29:295-301.   DOI
20 Eugenio ME, Carbajo JM, Martin JA, Gonzalez AE, Villar JC. Laccase production by Pycnoporus sanguineus under different culture conditions. J Basic Microbiol 2009;49:433-40.   DOI
21 Mansur M, Arias ME, Copa-Patino JL, Flardh M, Gonzalez AE. The white-rot fungus Pleurotus ostreatus secretes laccase isozymes with different substrate specificities. Mycologia 2003;95:1013-20.   DOI
22 Castanera R, Perez G, Omarini A, Alfaro M, Pisabarro AG, Faraco V, Amore A, Ramirez L. Transcriptional and enzymatic profiling of Pleurotus ostreatus laccase genes in submerged and solid-state fermentation cultures. Appl Environ Microbiol 2012;78:4037-45.   DOI
23 Palmieri G, Cennamo G, Faraco V, Amoresano A, Sannia G, Giardina P. Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzyme Microb Technol 2003;33:220-30.   DOI
24 Giardina P, Autore F, Faraco V, Festa G, Palmieri G, Piscitelli A, Sannia G. Structural characterization of heterodimeric laccases from Pleurotus ostreatus. Appl Microbiol Biotechnol 2007;75:1293-300.   DOI
25 Choi J, Cheong K, Jung K, Jeon J, Lee GW, Kang S, Kim S, Lee YW, Lee YH. CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes. Nucleic Acids Res 2013;41:D714-9.   DOI
26 Palmieri G, Giardina P, Marzullo L, Desiderio B, Nitti G, Cannio R, Sannia G. Stability and activity of a phenol oxidase from the ligninolytic fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 1993;39:632-6.   DOI
27 Giardina P, Aurilia V, Cannio R, Marzullo L, Amoresano A, Siciliano R, Pucci P, Sannia G. The gene, protein and glycan structures of laccase from Pleurotus ostreatus. Eur J Biochem 1996;235:508-15.   DOI
28 Giardina P, Cannio R, Martirani L, Marzullo L, Palmieri G, Sannia G. Cloning and sequencing of a laccase gene from the lignin-degrading basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 1995;61:2408-13.
29 Hong F, Meinander NQ, Jonsson LJ. Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris. Biotechnol Bioeng 2002;79:438-49.   DOI
30 Li P, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Duzgunes N, Renugopalakrishnan V. Expression of recombinant proteins in Pichia pastoris. Appl Biochem Biotechnol 2007;142:105-24.   DOI
31 Ohga S, Royse DJ. Transcriptional regulation of laccase and cellulase genes during growth and fruiting of Lentinula edodes on supplemented sawdust. FEMS Microbiol Lett 2001;201:111-5.   DOI
32 Chen S, Ge W, Buswell JA. Biochemical and molecular characterization of a laccase from the edible straw mushroom, Volvariella volvacea. Eur J Biochem 2004;271:318-28.   DOI
33 Giardina P, Palmieri G, Scaloni A, Fontanella B, Faraco V, Cennamo G, Sannia G. Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochem J 1999;341(Pt 3): 655-63.
34 Gasser B, Maurer M, Rautio J, Sauer M, Bhattacharyya A, Saloheimo M, Penttila M, Mattanovich D. Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions. BMC Genomics 2007;8:179.   DOI
35 Chawla S, Rawal R, Shabnam, Kuhad RC, Pundir CS. An amperometric polyphenol biosensor based on laccase immobilized on epoxy resin membrane. Anal Methods 2011;3:709-14.   DOI
36 Garcia TA, Santiago MF, Ulhoa CJ. Properties of laccases produced by Pycnoporus sanguineus induced by 2,5-xylidine. Biotechnol Lett 2006;28:633-6.   DOI