• 제목/요약/키워드: Recombinant Protein Production

검색결과 489건 처리시간 0.021초

Pichia pastoris: A Recombinant Microfactory for Antibodies and Human Membrane Proteins

  • Goncalves, A.M.;Pedro, A.Q.;Maia, C.;Sousa, F.;Queiroz, J.A.;Passarinha, L.A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권5호
    • /
    • pp.587-601
    • /
    • 2013
  • During the last few decades, it has become evident that the compatibility of the yeast biochemical environment with the ability to process and translate the RNA transcript, along with its capacity to modify a translated protein, are relevant requirements for selecting this host cell for protein expression in several pharmaceutical and clinical applications. In particular, Pichia pastoris is used as an industrial host for recombinant protein and metabolite production, showing a powerful capacity to meet required biomolecular target production levels in high-throughput assays for functional genomics and drug screening. In addition, there is a great advantage to using P. pastoris for protein secretion, even at high molecular weights, since the recovery and purification steps are simplified owing to relatively low levels of endogenous proteins in the extracellular medium. Clearly, no single microexpression system can provide all of the desired properties for human protein production. Moreover, chemical and physical bioprocess parameters, including culture medium formulation, temperature, pH, agitation, aeration rates, induction, and feeding strategies, can highly influence product yield and quality. In order to benefit from the currently available wide range of biosynthesis strategies using P. pastoris, this mini review focuses on the developments and technological fermentation achievements, providing both a comparative and an overall integration analysis. The main aim is to highlight the relevance and versatility of the P. pastoris biosystem to the design of more cost-effective microfactories to meet the increasing demands for recombinant membrane proteins and clinical antibodies for several therapeutic applications.

Novel Modification of Growth Medium Enables Efficient E. coli Expression and Simple Purification of an Endotoxin-Free Recombinant Murine Hsp70 Protein

  • Zachova, Katerinat;Krupka, Michal;Chamrad, Ivo;Belakova, Jana;Horynova, Milada;Weigl, Evzen;Sebela, Marek;Raska, Milan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권7호
    • /
    • pp.727-733
    • /
    • 2009
  • Heat shock protein 70 kDa (hsp70), a molecular chaperone involved in folding of nascent proteins, has been studied for its ability to activate innate and specific immunity. High purity hsp70 preparation is generally required for immunization experiments, because endotoxins and other immunologically active contaminants may affect immune responses independently of hsp70. We have developed a novel modification of E. coli-expression medium that enabled a simple two-step production and purification method for endotoxin-free recombinant hsp70. During Ni-NTA-based affinity purification of hsp70, a contaminating protein from host E. coli cells, L-glutamine-n-fructose-6-phosphate aminotransferase (GFAT), was identified. By testing various compounds, supplementation of growth medium with a GFAT metabolite,N-acetylglucosamine, was found to reduce GFAT expression and increase the total hsp70 yield five times. The new protocol is based on column purification of His-tagged hsp70 protein produced by E. coli with the modified medium, followed by endotoxin removal by Triton X-114 extraction. This approach yielded hsp70 with high purity and minimal endotoxin contamination, making the final product acceptable for immunization experiments. In summary, a simple modification of growth medium allowed production of recombinant mouse hsp70 in high yield and purity, thus compatible with immunological studies. This protocol may be useful for production of other Histagged proteins expressed in E. coli.

재조합 Pichia pastoris의 유가식 배양을 통한 남극세균 Flavobacterium frigoris PS1 유래 결빙방지단백질의 생산 (Production of Antifreeze Protein from Antarctic Bacterium Flavobacterium frigoris PS1 by using Fed-batch Culture of Recombinant Pichia pastoris)

  • 김은재;도학원;이준혁;이성구;김학준;한세종
    • KSBB Journal
    • /
    • 제29권4호
    • /
    • pp.303-306
    • /
    • 2014
  • Antifreeze proteins (AFP) inhibit ice growth to permit the survival of polar organisms in the cold environments. The recombinant AFP from an Antarctic bacterium, Flavobacterium frigoris PS1, FfIBP (Flavobacterium frigoris ice-binding protein), was produced using Pichia pastoris expression system. The optimum fermentation temperature ($30^{\circ}C$) and pH (5) for FfIBP production were determined using a fed-batch culture system. The maximal cell density and purified FfIBP were 112 g/L and 70 mg/L, respectively. The thermal hysteresis (TH) activity (0.85) of FfIBP obtained using a glycerol-methanol fed-batch culture system was 2-fold higher than that of the LeIBP (Leucosporidium ice-binding protein). This work allows for large-scale production of FfIBP, which could be extended to further application studies using recombinant AFPs.

Strategy for enhancing Production of recombinant Protein in tobacco's suspension culture

  • Lee, Dong-Geun;Lee, Jae-Hwa
    • 한국생명과학회:학술대회논문집
    • /
    • 한국생명과학회 2002년도 제38회 학술심포지움
    • /
    • pp.48-60
    • /
    • 2002
  • Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that stimulates the production of granulocytes, macrophages, and white blood cells. The effects of osmotic pressure on secretion of human GM-CSF into the culture medium were investigated in suspension cultures of transgenic tobacco cells. An increase in osmotic pressure caused by the addition of mannitol decreased the cell size index, with the effect being more pronounced when cells were measured wet rather than dry. Increased osmotic pressure enhanced the secretion of hGM-CSF. At 90 g/L mannitol, the maximum concentration tested, hGM-CSF was present in the culture medium at 980 ug/L. As the concentration of mannitol increased, the total amount of protein secreted also increased, but was disproportionately enriched in GM-CSF NaCl, another osmoticum, had very similar effects on cell growth and hGM-CSF production, but did not cause enrichment for hGM-CSF Additionally, protein-stabilizing polymer was added to culture broth to enhance stability of secreted recombinant protein. Finally, above two method were applied together to maximize the productivity.

  • PDF

Production and Purification of Soluble Recombinant Human Lymphotoxin in Escherichia coli

  • Choi, Yoon-Ho;Na, Doe-Sun;Pan, Jae-Gu;Park, Seung-Kiel;Yoo, Hyang-Sook;Kang, Kook-Hee;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권1호
    • /
    • pp.21-25
    • /
    • 1992
  • Human lymphotoxin (LT) was produced in E. coli as a soluble protein. The level of recombinant human LT production was about 4% of the total souble proteins of E. coli extracts. Recominant human LT was purified to apparant homogeneity by a simple procedure utilizing FPLC on Mono Q and Mono S columns. The specific activity of the purified LT was $10\times10^7\;units/mg$.

  • PDF

Perfusion Cultivation of Transgenic Nicotiana tabacum Suspensions in Bioreactor for Recombinant Protein Production

  • Lee Sang-Yoon;Kim Dong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.673-677
    • /
    • 2006
  • A perfusion culture of transgenic Nicotiana tabacum cell suspensions, transformed to express recombinant glucuronidase (GUS), was successfully performed in a 5-1 stirred tank bioreactor. With 0.1 $day^{-1}$ of perfusion rate, the maximum dry cell weight (DCW) reached to 29.5 g/l in 16 days, which was 2.1-fold higher than the obtained in batch culture (14.3 g/l). In terms of the production of GUS, the volumetric activity could be increased up to 12.8 U/ml by using perfusion, compared with 4.9 U/ml in batch culture. The specific GUS activities in both perfusion and batch cultures were maintained at similar levels, 200-400 U/g DCW. Consequently, a perfusion culture could be a good strategy for the enhanced production of recombinant proteins in a plant cell culture system.

Effect of Induction Temperature on the $P_L$ Promoter Controlled Production of Recombinant Human Interleukin-2 in Escherichia coli

  • Lee, In-Young;Kim, Myung-Kuk;Lee, Sun-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권1호
    • /
    • pp.26-34
    • /
    • 1992
  • The effect of induction temperature on fermentation parameters has been investigated extensively using Escherichia coli M5248[pNKM21], a producer of recombinant human interleukin-2 (rhIL-2). In this recombinant microorganism, the gene expression of rhIL-2 is regulated by the cI857 repressor and $P_L$ promoter system. The recombinant fermentation parameters studied in this work include the cell growth, protein synthesis, cell viability, plasmid stability, $\beta$-lactamase activity, and rhIL-2 productivity. Interrelationships of such fermentation parameters have been analyzed through a quantitative assessment of the experimental data set obtained at eight different culture conditions. While the expression of rhIL-2 gene was repressed at culture temperatures below $34^\circ{C}$ with little effect on other fermentation parameters, under the conditions of rhIL-2 production $>(36~44^\circ{C})$ the cell growth, plasmid stability, and $\beta$-lactamase activity were, as induction temperature was increased, more profoundly reduced. Although the rhIL-2 content in the insoluble protein fraction was maximum at $40^\circ{C}$, total rhIL-2 production in the culture volume was found to be highest at the induction temperature of $36^\circ{C}$. This was in contrast to the previously known optimum induction temperature of the P$_{L}$ promoter system $>(40~42^\circ{C})$.Explanations for such a discrepancy have been proposed based on a product formation kinetics, and their implications have been discussed in detail.l.

  • PDF

Evaluation of Th1/Th2-Related Immune Response against Recombinant Proteins of Brucella abortus Infection in Mice

  • Im, Young Bin;Park, Woo Bin;Jung, Myunghwan;Kim, Suk;Yoo, Han Sang
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권6호
    • /
    • pp.1132-1139
    • /
    • 2016
  • Brucellosis is a zoonotic disease caused by Brucella, a genus of gram-negative bacteria. Cytokines have key roles in the activation of innate and acquired immunities. Despite several research attempts to reveal the immune responses, the mechanism of Brucella infection remains unclear. Therefore, immune responses were analyzed in mice immunized with nine recombinant proteins. Cytokine production profiles were analyzed in the RAW 264.7 cells and naive splenocytes after stimulation with three recombinant proteins, metal-dependent hydrolase (r0628), bacterioferritin (rBfr), and thiamine transporter substrate-binding protein (rTbpA). Immune responses were analyzed by ELISA and ELISpot assay after immunization with proteins in mice. The production levels of NO, TNF-α, and IL-6 were time-dependently increased after having been stimulated with proteins in the RAW 264.7 cells. In naive splenocytes, the production of IFN-γ and IL-2 was increased after stimulation with the proteins. It was concluded that two recombinant proteins, r0628 and rTbpA, showed strong immunogenicity that was induced with Th1-related cytokines IFN-γ, IL-2, and TNF-α more than Th2-related cytokines IL-6, IL-4, and IL-5 in vitro. Conversely, a humoral immune response was activated by increasing the number of antigen-secreting cells specifically. Furthermore, these could be candidate diagnosis antigens for better understanding of brucellosis.

GAL promoter에 적합한 효모변이주 Y334의 회분식 배양에서의 재조합 단백질 발현특성 (The Study on Recombinant Protein Production using S. cerevisiae Mutant Y334 Suitable for GAL Promoter)

  • 강환구;이문원;전희진
    • KSBB Journal
    • /
    • 제14권4호
    • /
    • pp.476-481
    • /
    • 1999
  • 본 연구에서 갈락토즈를 거의 사용하지 않고 glucose repression 정도가 줄어든 변이주를 이용하여 발현최적화를 수행하였다. 두 균주에서의 GAL promoter에 의한 외래단백질 생산시 glucose repression 정도에 대해 조사하였는데 대조해 Y2805는 glucose가 다 소비된 후 2~3시간 지난 후 발현이 시작되나 변이주 Y334는 약 0.5g/L 글루코즈 농도에서 25%정도의 발현이 이루어짐에 따라 변이주 Y334는 GAL promoter에 미치는 glucose repression정도가 매우 약한 장점을 확인하였다. GAL promoter에 의한 외래 단백질 생산시 발현을 위한 최적 갈락토즈 농도를 조사하였는데, Y3805는 3% 까지의 높은 갈락토즈 농도에서, 변이주 Y334는 1%정도의 낮은 갈락토즈 농도에서 각각 최대 발현량을 보였으며 변이주 Y334는 특히 0.01%정도의 낮은 갈락토즈 농도에서도 최대 발현의 60%량을 발현하였고 오히려 높은 갈락토즈 농도에서는 성장장애 현상을 보였다. 두 균주를 이용하여 배지중 pH가 외래 단백질 생산에 미치는 영향을 조사하였는데 두 균주 모두 pH 5근처에서 최대 발현량을 보임을 알 수 있었다. GAL promoter에 의한 외래 단백질 생산시 글루코즈와 갈락토즈, 에탄올의 소비속도를 조사하였는데, 글루코즈와 에탄올의 소비속도는 거의 비슷하였으나 갈락토즈 소비속도는 Y2805는 0.1232 g/L/hr/O.D.이고, 변이주 Y334는 0.0131g/L/hr/O.D. 이다. 또한 두균주의 분비효율을 조사하였는데 Y2805는 발효후반부에 총 생산 albumin중 약 70%는 분비되었고 30%는 cell 내 위치하는 것을 알 수 있었고 Y334의 경우에는 발효후반부에 총 생산 albumin중 50%가 cell 밖으로 분비되고 50%는 cell 내에 존재하는 것으로 확인되었다. 이는 Y334의 해결해야 할 단점으로 생각 되어지며 이러한 문제의 해결을 위해 albumin 생산성이 2~3배 증가된 초분비 S. cerevisiae 돌연변이주 개발이 현재 진행중이다.

  • PDF