Browse > Article
http://dx.doi.org/10.4014/jmb.1210.10063

Pichia pastoris: A Recombinant Microfactory for Antibodies and Human Membrane Proteins  

Goncalves, A.M. (CICS-UBI - Centro de Investigacao em Ciencias da Saude, Universidade da Beira Interior)
Pedro, A.Q. (CICS-UBI - Centro de Investigacao em Ciencias da Saude, Universidade da Beira Interior)
Maia, C. (CICS-UBI - Centro de Investigacao em Ciencias da Saude, Universidade da Beira Interior)
Sousa, F. (CICS-UBI - Centro de Investigacao em Ciencias da Saude, Universidade da Beira Interior)
Queiroz, J.A. (CICS-UBI - Centro de Investigacao em Ciencias da Saude, Universidade da Beira Interior)
Passarinha, L.A. (CICS-UBI - Centro de Investigacao em Ciencias da Saude, Universidade da Beira Interior)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.5, 2013 , pp. 587-601 More about this Journal
Abstract
During the last few decades, it has become evident that the compatibility of the yeast biochemical environment with the ability to process and translate the RNA transcript, along with its capacity to modify a translated protein, are relevant requirements for selecting this host cell for protein expression in several pharmaceutical and clinical applications. In particular, Pichia pastoris is used as an industrial host for recombinant protein and metabolite production, showing a powerful capacity to meet required biomolecular target production levels in high-throughput assays for functional genomics and drug screening. In addition, there is a great advantage to using P. pastoris for protein secretion, even at high molecular weights, since the recovery and purification steps are simplified owing to relatively low levels of endogenous proteins in the extracellular medium. Clearly, no single microexpression system can provide all of the desired properties for human protein production. Moreover, chemical and physical bioprocess parameters, including culture medium formulation, temperature, pH, agitation, aeration rates, induction, and feeding strategies, can highly influence product yield and quality. In order to benefit from the currently available wide range of biosynthesis strategies using P. pastoris, this mini review focuses on the developments and technological fermentation achievements, providing both a comparative and an overall integration analysis. The main aim is to highlight the relevance and versatility of the P. pastoris biosystem to the design of more cost-effective microfactories to meet the increasing demands for recombinant membrane proteins and clinical antibodies for several therapeutic applications.
Keywords
Pichia pastoris; antibodies; human membrane proteins; bioprocess design;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tsujikawa, M., K. Okabayashi, M. Morita, and T. Tanabe. 1993. Secretion of a variant of human single-chain urokinase-type plasminogen activator without an N-glycosylation site in the methylotrophic yeast, Pichia pastoris and characterization of the secreted product. Yeast 12: 541-553.
2 Wegner, G. 1990. Emerging applications of the methylotrophic yeast. FEMS Microbiol. Rev. 7: 279-283.
3 Yurugi-Kobayashi, T., H. Asada, M. Shiroishi, T. Shimamura, S. Funamoto, N. Katsuta, et al. 2009. Comparison of functional non-glycosylated GPCRs expression in Pichia pastoris. Biochem. Biophys. Res. Commun. 380: 271-276.   DOI   ScienceOn
4 White, C. E., M. J. Hunter, D. P. Meininger, L. R. White, and E. A. Komives. 1995. Large-scale expression, purification and characterization of small fragments of thrombomodulin - the role of sixth domain and methionine 388. Protein Eng. Des. Sel. 8: 1177-1187.   DOI
5 Wood, M. J. and E. A. Komives. 1999. Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation. J. Biomol. NMR 13: 149-159.   DOI   ScienceOn
6 Ye, J., J. Ly, K. Watts, A. Hsu, A. Walker, K. McLaughlin, et al. 2011. Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production. Biotechnol. Prog. 27: 1744-1750.   DOI   ScienceOn
7 Zhang, W., M. A. Bevins, B. A. Plantz, L. A. Smith, and M. M. Meagher. 2000. Modelling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A. Biotechnol. Bioeng. 70: 1-8.   DOI   ScienceOn
8 Zhang, W., M. Inan, and M. M. Meagher. 2000. Fermentation strategies for recombinant protein expression in the methylotrophic yeast Pichia pastoris. Biotechnol. Bioprocess Eng. 5: 275-287.   DOI   ScienceOn
9 Murasugi, A., Y. Asami, and M. Mera-Kikuchi. 2001. Production of recombinant human bile salt-stimulated lipase in Pichia pastoris. Protein Expr. Purif. 23: 282-288.   DOI   ScienceOn
10 Oehler, R., G. Lesnicki, and M. Galleno. 1998. High cell density fermentation of Pichia pastoris using nonphosphate precipitate forming sodium hexametaphosphate as a phosphate source. Current topics in gene expression annual meeting. SanDiego, CA, USA
11 Plantz, B. A., K. Nickerson, S. D. Kachman, and V. L. Schlegel. 2007. Evaluation of metals in a defined medium for Pichia pastoris expressing recombinant beta-galactosidase. Biotechnol. Prog. 23: 687-692.
12 Ogunijimi, A., J. Chandler, C. Gooding, A. Recinos, and P. Choudary. 1999. High-level secretory expression of immunologically active intact antibody from yeast Pichia pastoris. Biotechnol. Lett. 21: 561-567.   DOI   ScienceOn
13 Paifer, E., E. Margolles, J. Cremata, R. Montesino, L. Herera, and J. M. Delgado. 1994. Efficient expression and secretion of recombinant alpha amylase in Pichia pastoris using two different signal sequences. Yeast 10: 1415-1419.   DOI   ScienceOn
14 Panjideh, H., V. Coelho, J. Dernedde, H. Fuchs, U. Keilholz, E. Thiel, and P. M. Deckert. 2008. Production of bifunctional single-chain antibody-based fusion proteins in Pichia pastoris supernatants. Bioprocess Biosyst. Eng. 31: 559-568.   DOI
15 Porro, D., B. Gasser, T. Fossati, M. Maurer, P. Branduardi, M. Sauer, and D. Mattanovich. 2011. Production of recombinant proteins and metabolites in yeasts: When are these systems better than bacterial production systems? Appl. Microbiol. Biotechnol. 89: 939-948.   DOI
16 Potgieter, T. I., M. Cukan, J. E. Drummond, N. R. Houston-Cummings, Y. Jiang, F. Li, et al. 2009. Production of monoclonal antibodies by glycoengineered Pichia pastoris. J. Biotechnol. 139: 318-325.   DOI   ScienceOn
17 Powers, D. B., P. Amersdorfer, M. Poul, U. S. Nielsen, M. R. Shalaby, G. P. Adams, et al. 2001. Expression of single-chain Fv-Fc fusions in Pichia pastoris. J. Immunol. Methods 251: 123-135.   DOI   ScienceOn
18 Raman, P., V. Cherezov, and M. Caffrey. 2006. The membrane protein data bank. Cell. Mol. Life Sci. 63: 36-51.   DOI
19 Ramon, A. and M. Marin. 2011. Advances in the production of membrane proteins in Pichia pastoris. Biotechnol. J. 6: 700-706.   DOI   ScienceOn
20 Sarramegna, V., I. Muller, G. Mousseau, C. Froment, B. Monsarrat, A. Milon, and F. Talmont. 2005. Solubilization, purification, and mass spectrometry analysis of the human muopioid receptor expressed in Pichia pastoris. Protein Expr. Purif. 43: 85-93.   DOI   ScienceOn
21 Roque, A. C., C. R. Lowe, and M. A. Taipa. 2004. Antibodies and genetically engineered related molecules: Production and purification. Biotechnol. Progr. 20: 639-654.   DOI   ScienceOn
22 Routledge, S. J., C. J. Hewitt, N. Bora, and R. M. Bill. 2011. Antifoam addition to shake flask cultures of recombinant Pichia pastoris increases yield. Microb. Cell Fact. 10: 17.   DOI   ScienceOn
23 Alisio, A. and M. Mueckler. 2010. Purification and characterization of mammalian glucose transporters expressed in Pichia pastoris. Protein Expr. Purif. 70: 81-87.   DOI   ScienceOn
24 Asada, H., T. Uemura, T. Yurugi-Kobayashi, M. Shiroishi, T. Shimamura, H. Tsujimoto, et al. 2011. Evaluation of the Pichia pastoris expression system for the production of GPCRs for structural analysis. Microb. Cell Fact. 10: 24.   DOI   ScienceOn
25 Barnard, G. C., A. R. Kull, N. S. Sharkey, S. S. Shaikh, A. M. Rittenhour, I. Burnina, et al. 2010. High-throughput screening and selection of yeast cell lines expressing monoclonal antibodies. J. Ind. Microbiol. Biotechnol. 37: 961-971.   DOI
26 Baumann K., M. Maurer, M. Dragosits, O. Cos, P. Ferrer, and D. Mattanovich. 2008. Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins. Biotechnol. Bioeng. 100: 177-183.   DOI   ScienceOn
27 Bornet, O., F. Alkhalfioui, C. Logez, and R. Wagner. 2012. Overexpression of membrane proteins using Pichia pastoris. Curr. Prot. Protein Sci. DOI: 10.1002/0471140864.ps2902s67.
28 Abdulaev, N. G., M. P. Popp, M. P., W. C. Smith, and K. D. Ridger. 1997. Functional expression of bovine opsin in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 10: 61-69.   DOI   ScienceOn
29 Brierley, R. 1998. Secretion of recombinant human insulin-like growth factor I (IGF-1). Pichia Protocols 103: 149-177.   DOI
30 Brady, C. P., R. L. Shimp, A. P. Miles, M. Whitmore, and A. W. Stowers. 2001. High-level production and purification of P30P2MSP1(19), an important vaccine antigen for malaria, expressed in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 23: 468-475.   DOI   ScienceOn
31 Brierley, R. A., C. Bussineau, R. Kosson, A. Melton, and R. S. Sieger. 1990. Fermentation development of recombinant Pichia pastoris expressing the heterologous gene: Bovine lysozyme. Ann. N.Y. Acad. Sci. 589: 350-362.   DOI   ScienceOn
32 Andre, N., N. Cherouati, C. Prual, T. Steffan, G. Zeder-Lutz, T. Magnin, et al. 2006. Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci. 15: 1115-1126.   DOI   ScienceOn
33 Celik, E. and P. Calik. 2011. Production of recombinant proteins by yeast cells. Biotechnol. Adv. 142: 105-124.
34 Celik, E., P. Calik, and S. G. Oliver. 2009. Fedbatch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Yeast 92: 473-484.
35 Cereghino, G. P., J. L. Cereghino, C. Ilgen, and J. M. Cregg. 2002. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr. Opin. Biotech. 13: 329-332.   DOI   ScienceOn
36 Chung, B. H. and K. S. Park. 1997. Simple approach to reducing proteolysis during secretory production of human parathyroid hormone in Saccharomyces cerevisiae. Biotechnol. Bioeng. 57: 245-249.
37 Cereghino, G. P., J. L., Cereghino, and A. Sunga. 2001. New selectable marker/auxotrophic host strain combinations for molecular genetic manipulation of Pichia pastoris. Gene 263: 159-169.   DOI   ScienceOn
38 Cereghino, G. P. and J. M. Cregg. 1999. Applications of yeast in biotechnology: Protein production and genetic analysis. Curr. Opin. Biotechnol. 10: 422-427.   DOI   ScienceOn
39 Craveiro, R. B., J. D., Ramalho, J. R. Chagas, P. H. M. Wang, D. E. Casarini, J. L. Pesquero, et al. 2006. High expression of human carboxypeptidase M in Pichia pastoris: Purification and partial characterization. Braz. J. Med. Biol. Res. 39: 211-217.   DOI
40 Cereghino, J. L. and J. M. Cregg. 2000. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24: 45-66.   DOI   ScienceOn
41 Cregg, J. M. and K. R. Madden. 1987. Development of yeast transformation systems and construction of methanol-utilizationdefective mutants of Pichia pastoris by gene disruption. Biol. Res. Ind. Yeast 2: 1-18.
42 Cregg, J. M., J. L. Cereghino, S. Jianying, and D. Higgins. 2000. Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 16: 23-52.   DOI   ScienceOn
43 Cregg, J. M., K. J. Barringer, A. Y. Hessler, and K. R. Madden. 1985. Pichia pastoris as a host system for transformations. Mol. Cell. Biol. 5: 3376-3385.
44 Daly, R. and M. T. W. Hearn. 2005. Expression of heterologous proteins in Pichia pastoris: A useful experimental tool in protein engineering and production. J. Mol. Recognit. 18: 119-138.   DOI   ScienceOn
45 Damasceno, L. M., C. J. Huang, and C. Batt. 2012. Protein secretion in Pichia pastoris and advances in protein production. Appl. Microbiol. Biotechnol. 93: 31-39.   DOI   ScienceOn
46 D'Anjou, M. C. and A. J. Daugulis. 2000. Mixed-feed exponential feeding for fed-batch culture of recombinant methylotrophic yeast. Biotechnol. Lett. 22: 341-346.   DOI   ScienceOn
47 D'Anjou, M. C. and A. J. Daugulis. 2001. A rational approach to improving productivity in recombinant Pichia pastoris fermentation. Biotechnol. Bioeng. 72: 1-11.   DOI   ScienceOn
48 Damasceno, L. M., I. Pla, H. J. Chang, L. Cohen, G. Ritter, L. J. Old, and C. A. Batt. 2004. An optimized fermentation process for high-level production of single-chain Fv antibody fragment in Pichia pastoris. Protein Expr. Purif. 37: 18-26.   DOI   ScienceOn
49 De Rivoyre, D., F. Bonino, L. Ruel, M. Bidet, P. Therond, and I. Mus-Veteau. 1996. Human receptor Smoothened, a mediator of Hedgehog signalling, expressed in its native conformation in yeast. FEBS Lett. 579: 1529-1533.
50 Demain, A. and P. Vaishnav. 2009. Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 27: 297-306.   DOI   ScienceOn
51 Dietzsch, C., O. Spadiut, and C. Herwig. 2011. A fast approach to determine a fed batch feeding profile for recombinant Pichia pastoris strains. Microb. Cell Fact. 10: 85.   DOI
52 Dietzsch, C., O. Spadiut, and C. Herwig. 2011. A dynamic method based on the specific substrate uptake rate to set up a feeding strategy for Pichia pastoris. Microb. Cell Fact. 10: 14.   DOI   ScienceOn
53 Domingez, A., E. Ferminan, M. Sanchez, F. J. Gonzalez, F. M. Perez-Campo, S. Garcia, et al. 1998. Non-conventional yeast as hosts for heterologous protein production. Int. Microbiol. 1: 131-142.
54 Fan, Y., L. Shi, V. Ladizhansky, and L. S. Brown. 2011. Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. J. Biomol. NMR 49: 151-161.   DOI
55 Dragosits, M., J. Stadlmann, J. Albiol, K. Baumann, M. Maurer, B. Gasser, et al. 2009. The effect of temperature on the proteome of recombinant Pichia pastoris. Analysis 8: 1380-1392.
56 Eldin, P., M. E. Pauza, Y. Hieda, G. Lin, M. P. Murtaugh, P. R. Pentel, and C. A. Pennell. 1997. High-level secretion of two antibody single chain Fv fragments by Pichia pastoris. J. Immunol. Methods 201: 67-75.   DOI   ScienceOn
57 Faber, K., W. Harder, G. Ab, and M. Veenhuis. 1995. Review: Methylotrophic yeast as factories for the production of foreign proteins. Yeast 11: 1331-1344.   DOI   ScienceOn
58 Gellissen, G. 2000. Heterologous protein production in methylotrophic yeasts. Appl. Microbiol. Biotechnol. 54: 741-750.   DOI   ScienceOn
59 Gleeson, M. A., C. White, D. P. Meininger, and E. A. Komives. 1998. Generation of protease-deficient strains and their use in heterologous protein expression. Methods Mol. Biol. 103: 81-94.
60 Ghosalkar, A., V. Sahai, and A. Srivastava. 2008. Optimization of chemically defined medium for recombinant Pichia pastoris for biomass production. Bioresour. Technol. 99: 7906-7910.   DOI   ScienceOn
61 Goel, A., D. Colcher, J. Baranowska-Kortylewicz, S. Augustine, B. J. M. Booth, G. Pavlinkova, and S. K. Batra. 2000. Genetically engineered tetravalent single-chain Fv of the pancarcinoma monoclonal antibody CC49: Improved biodistribution and potential for therapeutic application. Cancer Res. 60: 6964-6971.
62 Hohenblum, H., N. Borth, and D. Mattanovich. 2003. Assessing viability and cell-associated product of recombinant protein producing Pichia pastoris with flow cytometry. J. Biotechnol. 102: 281-290.   DOI   ScienceOn
63 Ha, S., Y. Wang, and R. R. Rustandi. 2011. Biochemical and biophysical characterization of humanized IgG1 produced in Pichia pastoris. MAbs 3: 453-460.   DOI
64 Hamilton, S. R. and T. U. Tilman. 2007. Glycosylation engineering in yeast: The advent of fully humanized yeast. Curr. Opin. Biotechnol. 18: 387-392.   DOI   ScienceOn
65 Hellwing, S., F. Emde, N. Raven, M. Henke, P. Van der Long, and R. Fischer. 2000. Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations. Biotechnol. Bioeng. 74: 344-352.
66 Huang, C. J., L. M. Damasceno, K. A. Anderson, S. Zhang, L. J. Old, and C. A. Batt. 2011. A proteomic analysis of the Pichia pastoris secretome in methanol-induced cultures. Genomics Transcriptomics Proteomics 90: 235-247.
67 Idiris, A., H. Tohda, H. Kumagai, and K. Takegawa. 2010. Engineering of protein secretion in yeast: Strategies and impact on protein production. Appl. Microbiol. Biotechnol. 86: 403-417.   DOI
68 Issaly, N., O. Solsona, P. Joudrier, M. F. Gautier, G. Moulin, and H. Boze. 2001. Optimization of the wheat puroindoline-a production in Pichia pastoris. J. Appl. Microbiol. 90: 397-406.   DOI   ScienceOn
69 Jeong, K.J., S. H. Jang, and N. Velmurugan. 2011. Recombinant antibodies: Engineering and production in yeast and bacterial hosts. Biotechnol. J. 6: 16-27.   DOI   ScienceOn
70 Jafari, R., B. E. Sundstrom, and P. Holm. 2011. Optimization of production of the anti-keratin 8 single-chain Fv TS1-218 in Pichia pastoris using design of experiments. Microb. Cell Fact. 10: 34.   DOI   ScienceOn
71 Li, P., A. Anumanthan, X. G. Gao, K. Ilangovan, V. V. Suzara, N. Duzgune , and V. Renugopalakrishnan. 2007. Expression of recombinant proteins in Pichia pastoris. Appl. Biochem. Biotechnol. 142: 105-124.   DOI   ScienceOn
72 Jiang, Y., F. Li, D. Zha, T. I. Potgieter, T. Mitchell, R. Moore, et al. 2011. Purification process development of a recombinant monoclonal antibody expressed in glycoengineered Pichia pastoris. Protein Expr. Purif. 76: 7-14.   DOI   ScienceOn
73 Kato, S., M. Ishibashi, D. Tatsuda, H. Tokunaga, and M. Tokunaga. 2001. Efficient expression, purification and characterization of mouse salivary a-amylase secreted from methylotrophic yeast, Pichia pastoris. Yeast 18: 643-655.   DOI   ScienceOn
74 Kottmeier, K., K. Ostermann, T. Bley, and G. Rodel. 2011. Hydrophobin signal sequence mediates efficient secretion of recombinant proteins in Pichia pastoris. Appl. Microbiol. Biotechnol. 91: 133-141.   DOI
75 Li, T., J. Cheng, B. Hu, Y. Liu, G. Quian, and F. Liu. 2008. Construction, production, and characterization of recombinant scFv antibodies against methamidophos expressed in Pichia pastoris. World J. Microbiol. Biotechnol. 24: 867-874.   DOI
76 Li, H. and M. d'Anjou. 2009. Pharmacological significance of glycosylation in the therapeutic proteins. Curr. Opin. Biotechnol. 20: 678-684.   DOI   ScienceOn
77 Li, Z. J., F. Xiong, Q. Lin, M. d'Anjou, A. J. Daugulis, D. S. Yang, and C. L. Hew. 2001. Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expr. Purif. 21: 483-445.
78 Lin, H., T. Kim, F. Xiong, and X. Yang. 2007. Enhancing the production of Fc fusion protein in fed-batch fermentation of Pichia pastoris by design of experiments. Biotechnol. Prog. 23: 621-625.
79 Minning, S., A. Serrano, P. Ferrer, C. Sola, R. D. Schmid, and F. Valero. 2001. Optimization of the high-level production of Rhizopus oryzae lipase in Pichia pastoris. J. Biotechnol. 86: 59-70.   DOI   ScienceOn
80 Macauley-Patrick, S., L. M. Fazenda, B. McNeil, and L. M. Harvey. 2005. Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249-270.   DOI   ScienceOn
81 Müller, K. M., K. M. Arndt, K. Bauer, and A. Plückthun. 1998. Tandem immobilized metal-ion affinity chromatography/ immunoaffinity purification of His-tagged proteins - evaluation of two anti-His-tag monoclonal antibodies. Anal. Biochem. 259: 54-61.   DOI   ScienceOn
82 Shi, X., T. Karbut, M. Chamankhah, M. Alting-Mees, S. M. Hemmingsen, and D. Hegedus. 2003. Optimal conditions for the expression of a single-chain antibody (scFv) gene in Pichia pastoris. Protein Expr. Purif. 28: 321-330.   DOI   ScienceOn
83 Stratton, J., V. Chiruvolu, and M. Meagher. 1998. High celldensity fermentation. Biotechnol. Adv. 103: 107-120.
84 Zhang, A., J. Luo, T. Zhang, Y. Pan, Y. Tan, C. Fu, and F. Tu. 2009. Recent advances on the GAP promoter derived expression system of Pichia pastoris. Mol. Biol. Rep. 36: 1611-1619.   DOI
85 Zhang, A. L., T. Y. Zhang, J. X. Luo, S. C. Chen, W. J. Guan, C. Y. Fu, et al. 2007. Constitutive expression of human angiostatin in Pichia pastoris by high-density cell culture. J. Ind. Microbiol. Biotechnol. 34: 117-122.   DOI   ScienceOn
86 Shepard, S., C. Stone, S. Cook, A. Bouvier, G. Boyd, G. Weatherly, et al. 2002. Recovery of intracellular recombinant proteins from the yeast Pichia pastoris by cell permeabilization. J. Biotechnol. 99: 149-160.   DOI   ScienceOn
87 Sinha, J., B. A. Plantz, M. Inan, and M. M. Meagher. 2005. Causes of proteolytic degradation of secreted recombinant proteins produced in methylotrophic yeast Pichia pastoris: Case study with recombinant ovine interferon-tau. Biotechnol. Bioeng. 89: 102-112.   DOI   ScienceOn
88 Tolner, B., L. Smith, R. H. Begent, and K. A. Chester. 2006. Production of recombinant protein in Pichia pastoris by fermentation. Nat. Protoc. 1: 1006-1021.   DOI   ScienceOn
89 Tschopp, J. F., P. F. Brust, J. M. Cregg, C. A. Stillman, and T. R. Gingeras. 1987. Expression of the LacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res. 15: 3859-3876.   DOI   ScienceOn