• Title/Summary/Keyword: Recombinant Protein Production

Search Result 489, Processing Time 0.027 seconds

PRODUCTION OF HUMAN PROTEIN TIMP-2: A HIGHLY EFFECTIVE ANTI-AGING INGREDIENT

  • Schutz, R.;Imfeld, D.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.590-600
    • /
    • 2003
  • The matrix metalloproteinases (MMPs) are a family of enzymes responsible for degrading connective tissue. MMPs catalyze the breakdown of collagen from the extracellular matrix, leading to wrinkle formation and accelerated skin aging. Furthermore, ultraviolet irradiation causes increased expression of certain MMPs. In the extracellular matrix turnover, MMPs are interacting with endogenous regulators named tissue inhibitors of metalloproteinases (TIMPs). Using peptide substrate assays, it has been demonstrated that TIMP-MMP complexes interact highly specifically with $K_{i}$ values of 10$^{-9}$ -10$^{-16}$ M. Therefore applications for TIMP as inhibitor of collagen degradation are suggested for cosmetic anti-aging products to prevent wrinkle formation and loss of elasticity. To date four TIMP proteins (TIMP-1, TIMP-2, TIMP-3 and TIMP-4) have been identified which show a high degree in sequence similarity. The production of human TIMP-2, a 194-residue nonglycosylated protein, was performed by fed-batch culture of Escherichia coli. TIMP-2 accumulated in the bacterial cells in an insoluble form as inclusion bodies. The inclusion bodies were solubilized and the protein refolded to yield the native TIMP-2 in the active form. The integrity of the protein was confirmed by mass analysis, Edman sequencing and gel shift experiments with authentic samples. The inhibitory activity of the refolded and purified TIMP-2 was demonstrated with MMP-1 and MMP-2 assays using synthetic fluorogenic peptide substrates.s.

  • PDF

Characterization of the Monoclonal Antibody Specific to Human S100A2 Protein (인체 S100A2 단백질에 특이적인 단일클론 항체)

  • Kim, Jae Wha;Yoon, Sun Young;Kim, Joo Heon;Joo, Jong-Hyuck;Kim, Jin Sook;Lee, Younghee;Yeom, Young Il;Choe, Yong-Kyung;Choe, In Seong
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • Background: The S100A2 gene, also known as S100L or CaN19, encodes a protein comprised of 99-amino acids, is a member of the calcium-binding proteins of EF-hand family. According to a recent study, this gene was over-expressed in several early and malignant carcinomas compared to normal tissues. To elucidate the role of S100A2 protein in the process during carcinogenesis, production of monoclonal antibody specific to the protein is essential. Methods: First, cDNA sequence coding for ORF region of human S100A2 gene was amplified and cloned into an expression vector to produce GST fusion protein. Recombinant S100A2 protein and subsequently, monoclonal antibody to the protein were produced. The specificity of anti-S100A2 monoclonal antibody was confirmed by immunoblot analysis of cross reactivity to other recombinant proteins of S100A family (GST-S100A1, GST-S100A4 and GST-S100A6). To confirm the relation of S100A2 to cervical carcinogenesis, S100A2 protein in early cervical carcinoma tissue was immunostained using the monoclonal antibody. Results: GST-S100A2 recombinant protein was purified by affinity chromatography and then fusion protein was cleaved and S100A2 protein was isolated. The monoclonal antibody (KK0723; Korean patent pending #2001-30294) to the protein was produced and the antibody did not react with other members of EF-hand family proteins such as S100A1, S100A4 and S100A6. Conclusion: These data suggest that anti-S100A2 monoclonal antibody produced in this study can be very useful for the early detection of cervical carcinoma and elucidation of mechanism during the early cervical carcinogenesis.

Effect of Sodium Butyrate on the Production of IDS by CHO-DG44 Cell

  • Jeon, Ok-Seon;Kang, Seon-Ah;Kim, Myoung-Hwa;Jeong, Yeon-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.214-217
    • /
    • 2005
  • Mammalian cell culture in the presence of sodium butyrate has been shown to enhance protein biosynthesis. In the present study, the effect of sodium butyrate on growth of recombinant Chinese Hamster Ovary cells and on the production of Iduronate 2-sulphatase were investigated in serum-containing and serum-free media. The culture with addition of 0-5mM sodium butyrate showed enhancement of both intracellular and extracellular IDS production. But, Cell death was observed in a dose-dependent manner. The optimal sodium butyrate concentration was observed to be 5mM. Also, The relative productivity of IDS was significantly increased when sodium butyrate was added to medium at 48 hour, the rapid growth phase. These results suggest that sodium butyrate are efficient agent for increasing the productivity of IDS with recombinant CHO cells.

  • PDF

Production of human insulin analogue using recombinant Escherichia coli

  • Lee, Ji-Seon;Park, Jin-Guk;Cho, Jung-Woo;Park, Sun-Ho;Nam, Doo-Hyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.34-38
    • /
    • 2003
  • For the production of $B^{30}-homoserine$ insulin analog as a novel anti-diabetic drug, the fermentative study was attempted for the maximal gene expression of HTS-fused $B^{30}-homoserine$ insulin precursor in the recombinant Escherichia coli cells. In a batch fermentation, the maximal production of insulin precursor as much as 38.95 mg/L-h, which occupied more than 12.8% of total cell protein. was achieved when the gene expression was induced by 0.5 mM IPTG at the middle logarithmic growth phase. The HTS-fused $B^{30}-homoserine$ insulin precursor was recovered from a batch culture through the processes of cell harvest, collection of insoluble fraction after sonication and purification by nickel affinity column chromatography. The isolated insulin precursor was 14 mg/L with a recovery yield of 35.9% of expressed gene product. The insulin A and B chain mixture was recovered after the insulin precursor was subjected to CNBr cleavage and purified by nickel affinity column chromatography. The isolated insulin chains were then sulfitolyzed with sodium thiosulfat and sodium tetrathionate, and reconstituted to insulin analog with ${\beta}-mercaptoethanol$, followed by purification with CM-Sepharose C-25 column chromatography.

  • PDF

Production of Therapeutic Glycoproteins throgh the Engineering of Glycosylation Pathway in Yeast

  • Roy, Samir-Kumar;Yasunori Chiba;Yoshifumi Jigami
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.219-226
    • /
    • 2000
  • The application of recombinant DNA technology to restructure metabolic net-work can change metabolite and protein products by altering the biosynthetic pathways in an organism. Although some success has been achieved, a more detailed and thorough investigation of this approach is certainly warranted since it is clear that such methods hold great potential based on the encouraging results obtained so far. In last decade, there have been tremendous advances in the field of glycobiology and the stage has been set for the biotechnological production of glycoproteins for therapeutic use. Today glycoproteins are one of the most important groups of pharmaceutical products. In this study the attempt was made to focus on identifying technologies that may have general application for modifying glycosylation pathway of the yeast cells in order to produce glycoproteins of therapeutic use. The carbohydrates of therapeutic recombinant glycoproteins play very important roles in determining their pharmacokinetic properties. A number of biological interactions and biological functions mediated by glycans are also being targeted for therapeutic manipulation in vivo. For a commercially viable production of therapeutic glycoproteins a metabolic engineering of a host cell is yet to be established.

  • PDF

Cloning and sequence analysis of Wild Argali short palate, lung and nasal epithelium clone 1 cDNA

  • Shen, Wen;Chen, Kaili;Sun, Yanming;Guo, Haiying;Chen, Dongmei;Cao, Yang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.5
    • /
    • pp.736-742
    • /
    • 2017
  • Objective: Experiments were conducted to clone the sequence of Wild Argali short palate, lung and nasal epithelium clone 1 (SPLUNC1) cDNA, and to lay the foundation for further study the biological function of Wild Argali SPLUNC1. Methods: The complete sequence of Wild Argali SPLUNC1 cDNA was generated by rapid amplification of cDNA ends. The entire coding sequence was inserted into the pPIC9K vector and expressed in Pichia pastoris (P. pastoris) GS115. The recombinant SPLUNC1 protein was detected by Western blot and purified by $Ni^{2+}$ chelate affinity chromatography. The test of effect of the protein on Mycoplasma ovipneumoniae (MO) was performed with real-time polymerase chain reaction. Results: The Wild Argali SPLUNC1 cDNA was 1,076 bp with an open reading frame of 768 bp, which encoded a 26.49 kDa protein composed of 255 amino acids. Its amino acid sequence shared 98.4%, 96.9%, 94.5%, 90.2%, 80.8%, 78.4%, 78.3%, 72.5%, 72.3%, 68.8% identity with those of SPLUNC1 cDNA from Ovis aries (accession no. NP_001288334.1), Capra hircus (accession no. XP_005688516.1), Pantholops hodgsonii (accession no. XP_005979709.1), Bos taurus (accession no. NP_776851.1), Felis catus (accession no. XP_006929910.1), Homo sapiens (accession no. NP_001230122.1), Sus scrofa (accession no. NP_001005727.1), Chinchilla lanigera (accession no. NP_001269294.1), Mus musculus (accession no. NP_035256.2), and Rattus norvegicus (accession no. NP_742028.1), respectively. The recombinant protein corresponded to the expected molecular mass of 25.47 kDa as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and it was detected in the supernatant of P. pastoris, and it could be purified. The results from the test of inhibition effect of argali recombinant SPLUNC1 protein on MO showed that the product could inhibit MO very well (p<0.01). Conclusion: The amino acid sequence of Wild Argali SPLUNC1 was different from other organisms. The recombinant SPLUNC1 protein has good biological activity.

Selection of Optimum Expression System for Production of Kringle Fragment of Human Apolipoprotein(a) in Saccharomyces cerevisiae

  • Cha Kwang Hyun;Kim Myoung Dong;Lee Tae Hee;Lim Hyung Kweon;Jung Kyung Hwan;Seo Jin Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.523-527
    • /
    • 2004
  • Recombinant Saccharomyces cerevisiae expression systems were developed to pro­duce a novel human anti-angiogenic protein called LK8, an 86 amino-acid kringle fragment pro­tein with three disulfide linkages. Galactose-inducible LK8 expression plasmid was constructed, and LK8 production levels by four S. cerevisiae strains were compared in order to select an op­timal host strain. S. cerevisiae 2805 was the most efficient among the strains tested. Elevating the LK8 gene copy number through multiple integration using 8-sequences as target sites re­sulted in more than a two-fold increase in the LK8 production level compared with the plasmid­based expression system. The maximum LK8 protein concentration of 25 mg/L was obtained from batch cultivation of the yeast transformant that harbors 16 copies of the LK8 gene. In con­clusion, the strain integrated with the multiple LK8 gene secreted the protein with relatively high yield, although, the increased LK8 gene dosage over 11 copies did not lead to further en­hancement in batch cultivations.

Study on stability test of in process sample of recombinant Protein A (재조합 단백질 A 제조공정시료의 안정성실험에 관한 연구)

  • Kim, Yoo Gon;Lee, Woo Jong;Won, Chan Hee;Shin, Chul Soo
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.483-491
    • /
    • 2012
  • This study is to investigate the issues on how to secure stability during the purification process for the production of recombinant protein A. The final recombinant protein A is produced by passing through the cation exchange column (SP) and the anion-exchange column (Q) during the production process, for which the samples produced by the step-by-step processes can be exposed to trouble in securing stable storage in case the next process cannot be taken within the proper time period. Accordingly, this study aims to evaluate the proper storage conditions and length of time when storing samples produced in the production process. That is, in this study, how to store fair samples, how long the storage period should be set up, and how to evaluate the security of its quality depending on time are dealt with. The items to be experimented with were enodotoxin, SDS-PAGE, HPLC purity and concentration. Experimental results showed that after passing the cation exchange column, when stored at $4^{\circ}C$ or room temperature, SDS-PAGE showed a major band, endotoxin is 5.0 Eu/mg or less, and concentration is on average of 8.21 to 8.24 mg/mL and RSD% 0.10~0.62%. In addition, HLPC purity showed somewhat stable results; at the HPLC purity 214 nm, the average is 99.24% to 99.37% and RSD% is 0.22~0.29%, while the average is 89.72% to 89.80% and RSD% 0.62~1.26% at 280 nm. On the contrary, after passing the anion exchange column, when stored at $4^{\circ}C$ or room temperature, SDS-PAGE revealed the major band, endotoxin is 0.5 Eu/mg or less, and concentration is on average of 5.59 mg/mL and RSD% 0.03~0.10%. when it comes to HLPC purity, the result showed that at the HPLC purity 214 nm, the average is 99.74% and RSD% is 0.10~0.11%, while the average is 96.16% to 96.85% and RSD% 0.72~1.13%. In conclusion, the stability of fair samples of recombinant protein A during the manufacturing process could be obtained without substance decomposition for 7~8 days at $4^{\circ}C$ or 20~21 days at room temperature.

Construction of the Silkworm, Bombyx mori, with a Green Fluorescence by Autographa californica Nuclear Polyhedrosis Virus

  • Jin, Byung-Rae;Yun, Eun-Young;Kang, Seok-Woo;Yoon, Hyung-Joo;Kim, Keun-Young;Kim, Ho-Rak;Je, Yeon-Ho;Kang, Seok-Kwon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.1 no.2
    • /
    • pp.149-153
    • /
    • 2000
  • We have constructed a recombinant baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV), containing green fluorescent protein (GFP) gene from the jellyfish, Aequorea victoria, and transferred it into the domestic silkworm Bombyx mori larvae for the production of visible transgenic silkworm of living organism. When one day-old fifth instar female larvae were injected with the recombinant AcNPV of 1x10$^{5}$ plaque forming units, the bright glow of GFP was detected in the recombinant AcNPV-infected larvae and in the newly hatched larvae of the next generation. Our findings demonstrate that the viral replication was detected in the silkworm treated with the recombinant ACNPV and the gfp gene was expressed under the transcriptional control of the polyhedrin gene promoter, Furthermore, the gfp gene was transmitted to the next generation, suggesting that this system can be applied for the development of transgenic silkworms.

  • PDF

Expression of Recombinant Bovine Lactoferrin and Lactoferrin N-lobe in Rhodococcus erythropolis at Low Temperature (저온에서 Rhodococcus erythropolis 균주로부터 재조합 젖소 Lactoferrin과 Lactoferrin N-lobe의 발현)

  • Kim Woan-Sub;Kim Gur-Yoo;Kwon Ill-Kyung;Goh Juhn-Su
    • Food Science of Animal Resources
    • /
    • v.25 no.2
    • /
    • pp.232-237
    • /
    • 2005
  • Lactoferrin is a member of the transferrin family of iron-binding glycoproteins. It is originally found in milk. In addition to its antibacterial and antiviral activities, lactoferrin has many other biological functions include anti-inflammatory properties, antitumor, cell growth-promoting activity as well as antioxidant effect In the present study, we report the production of recombinant bovine lactoferrin and lactoferrin N-lobe in the Rhodococcus erythropolis (R erythropolis) using pTip vector. The expression level was investigated in various range of temperature, and we could successfully expressed the bovine lactoferrin and lactoferrin N-lobe in R erythropolis at low temperature. The recombinant proteins were purified by Nickel-Nitrolotriacetic acid (Ni-NTA). The purified proteins were confirmed by SDS-PAGE and Western blot, which indicating that the recombinant proteins have a molecular weight of 80kDa and 43kDa for bovine lactoferrin and lactoferrin N-lobe, respectively.