Browse > Article

Selection of Optimum Expression System for Production of Kringle Fragment of Human Apolipoprotein(a) in Saccharomyces cerevisiae  

Cha Kwang Hyun (Department of Agricultural Biotechnology and Center for Agricultural Biotechnology, Seoul National University)
Kim Myoung Dong (Department of Agricultural Biotechnology and Center for Agricultural Biotechnology, Seoul National University)
Lee Tae Hee (Department of Agricultural Biotechnology and Center for Agricultural Biotechnology, Seoul National University)
Lim Hyung Kweon (Mogam Biotechnology Research Institute)
Jung Kyung Hwan (Department of Food and Biotechnology, Chungju National University)
Seo Jin Ho (Department of Agricultural Biotechnology and Center for Agricultural Biotechnology, Seoul National University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.9, no.6, 2004 , pp. 523-527 More about this Journal
Abstract
Recombinant Saccharomyces cerevisiae expression systems were developed to pro­duce a novel human anti-angiogenic protein called LK8, an 86 amino-acid kringle fragment pro­tein with three disulfide linkages. Galactose-inducible LK8 expression plasmid was constructed, and LK8 production levels by four S. cerevisiae strains were compared in order to select an op­timal host strain. S. cerevisiae 2805 was the most efficient among the strains tested. Elevating the LK8 gene copy number through multiple integration using 8-sequences as target sites re­sulted in more than a two-fold increase in the LK8 production level compared with the plasmid­based expression system. The maximum LK8 protein concentration of 25 mg/L was obtained from batch cultivation of the yeast transformant that harbors 16 copies of the LK8 gene. In con­clusion, the strain integrated with the multiple LK8 gene secreted the protein with relatively high yield, although, the increased LK8 gene dosage over 11 copies did not lead to further en­hancement in batch cultivations.
Keywords
apolipoprotein(a); kringle; Saccharomyces cerevisiae; ??????-integration;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Carmeliet, P. and R. K. Jain (2000) Angiogenesis in cancer and other diseases. Nature 407: 249-257   DOI   PUBMED   ScienceOn
2 Park, S. J., K. Ryu, C. W. Suh, Y. G. Chai, O. B. Kwon, S. K. Park, and E. K. Lee (2002) Solid-phase refolding of poly-lysine tagged fusion protein of hEGF and angiogenin. Biotechnol. Bioprocess Eng. 7: 1-5   DOI   ScienceOn
3 Mumberg, D., R. Muller, and M. Funk (1994) Regulatable promoters of Saccharomyces cerevisiae: Comparison of transcription activity and their use for heterologous ex-pression. Nucleic Acids Res. 22: 5767-5768   DOI   ScienceOn
4 van Dijken, J. R, J. Bauer, L. Brambilla, P. Duboc, J. M Francois, C. Gancedo, M. L. Giuseppin, J. J. Heijne, M. Hoare, H. C. Lange, E. A. Madden, P. Niederberger, J. Nielsen, J. L. Parou, T. Petit, D. Porro, M. Reuss, N. van Riel, M. Rizzi, H. Y. Steensma, C. T. Verrips, J. Vindelov, and J. T. Pronk (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Micro. Technol. 26: 706-714   DOI   ScienceOn
5 Lee, F. W. F. and N. A. Da Silva (1997) Improved effi-ciency and stability of multiple cloned gene insertions atthe S-sequences of Saccharomyces cerevisiae. Appl. Micro-biot. Biotechnol. 48: 339-345   DOI   ScienceOn
6 Kim, M. D., S. K. Rhee, and J. H. Seo (2001) Enhanced production of anticoagulant hirudin in recombinant Saccharomyces cerevisiae by chromosomal -integration. J. Biotechnol. 85: 41-48   DOI   ScienceOn
7 Wang, X., Z. Wang, and N. A. Da Silva (1996) G418 selection and stability of cloned genes integrated at the chromosomal -sequences of Saccharomyces cerevisiae. Biotechnol. Bioeng. 49: 45-51   DOI   ScienceOn
8 Kim, J. S., H. K. Yu, J. H. Ahn, H. J. Lee, S. W. Hong, K. H. Jung, S. I. Chang, Y. K. Hong, Y. A. Joe, S. M. Byun, S. K. Lee, S. I. Chung, and Y. Yoon (2004) Human apolipoprotein(a) kringle V inhibits angiogenesis in vitro and in vivo by interfering with the activation of focal adhesion kinases. Biochem. Biophys. Res. Commun. 313: 534-540   DOI   ScienceOn
9 Biemans, R., D. Thines, T. Rutgers, M. De Wilde, and T. Cabezon (1991) The large surface protein of hepatitis B virus is retained in the yeast endoplasmic reticulum and provokes its unique enlargement. DNA Cell Biol. 10: 191-200   DOI   ScienceOn
10 Kim, M. D., Y. J. Yoo, S. K. Rhee, and J. H. Seo (2001) Enhanced transformation efficiency of anticoagulant hi-rudin gene into Saccharomyces cerevisiae by double B-sequence. J. Microbiot. Biotechnot. 11: 61-64
11 Colville-Nash, P. R. and D. A. Willoughby (1997) Growth factors in angiogenesis: Current interest and therapeutic potential. Mol. Med. Today 4: 14-23
12 Moehle, C. M., M. W. Aynardi, M. R., Kolodny, F. J. Park, and E. W. Jones (1987) Protease B of Saccharomyces Cere-visiae: Isolation and regulation of the PRBl structural gene. Genetics 115: 255-263
13 Kim, Y. S., S. Y. Kim, J. H. Kim, and S. C. Kim (1999) Xylitol production using recombinant Saccharomyces cerevisiae containing multiple xylose reductase genes at Chro-mosomal S-sequences. J. Biotechnol. 67: 159-171   DOI   ScienceOn
14 Parekh, J. B. and K. D. WittruP (1997) Expression level tuning for optimal heterologous protein secretion in Saccharomyces cerevisiae. Biotechnol. Prog. 13: 117-122   DOI   ScienceOn
15 Sohn, I. H., S. K. Lee, E. S. Choi, and S. K. Rhee (1991) Gene expression and secretion of the anticoagulant hirudin in Saccharomyces cerevisiae. J. Microbiol Biotechnol, 1:266-273
16 Lim, Y. Y., S. M. Park, Y. S. Jang, M. S. Yang, and D. H. Kim (2003) Production of a functional mouse interferon from recombinant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 13: 537-543
17 Kim, H. J., J. N. Park, H. O. Kim, D. J. Shin, J. E. Chin, H. B. Lee, S. B. Chun, and S. Bai (2002) Cloning and expression of Paenibacillus sp. neopullunase gene in Saccharomyces cerevisiae producing Schwanniomyces occidentalis glucoamylase. J. Microbiol. Biotechnol. 12: 340-344.
18 Cho, K. M., Y. J. Yoo, and H. S. Kang (1999) -integ-ration of endo/exo-glucanase and -glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb. Technol. 25: 23-30   DOI   ScienceOn
19 Peterson M. S, M. D. Kim, K. C. Han, J. H. Kim, and J.H. Seo (2002) Flow cytometric analysis of human Iy-sozyme production in recombinant Saccharomyces Cere-visiae. Biotechnol. Bioprocess Eng. 7: 52-55   DOI   ScienceOn
20 Brower, V (1999) Tumor angiogenesis : New drugs on the block. Nat. Biotechnol. 17: 963-968   DOI   PUBMED   ScienceOn
21 Sambrook, J. and D. W. Russell (2001) Molecutar Clon-ing: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., USA
22 Brachmann C. B., A, Davis, G. J. Cost, E. Caputo, P. Hieter, and J. D. Boeke (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disrup-tion and other applications. Yeast 30: 115-132
23 Kim, M. D., K. C. Han, H. A. Kang, S. K. Rhee, and J. H. Seo (2003) Coexpression of BiP increased antithrombotichirudin production in recombinant Saccharomyces Cere-visiae. J. Biotechnol. 101: 81-87   DOI   ScienceOn
24 Robinson, A. S., V. Hines, and K. D. WittruP (1994) Pro-tein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Biotechnol 12:381-384   DOI