• Title/Summary/Keyword: Recombinant

Search Result 3,766, Processing Time 0.03 seconds

IL-12 Regulates B7-H1 Expression in Ovarian Cancer-associated Macrophages by Effects on NF-κB Signalling

  • Xiong, Hai-Yu;Ma, Ting-Ting;Wu, Bi-Tao;Lin, Yan;Tu, Zhi-Guang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5767-5772
    • /
    • 2014
  • Background and Aim: B7-H1, a co-inhibitory molecule of the B7 family, is found aberrantly expressed in ovarian cancer cells and infiltrating macrophage/dendritic-like cells, and plays a critical role in immune evasion by ovarian cancer. IL-12, an inducer of Th1 cell development, exerts immunomodulatory effects on ovarian cancer. However, whether IL-12 regulates B7-H1 expression in human ovarian cancer associated-macrophages has not been clarified. Therefore, we investigated the effects of IL-12 on the expression of B7-H1 in ovarian cancer-associated macrophages and possible mechanisms. Methods: PMA induced THP-1-derived macrophages or human monocyte-derived macrophages were treated with recombinant IL-12 (rIL-12) or infected with adenovirus carrying human IL-12 gene (Ad-IL-12-GFP) for 24 h, then cocultured with the SKOV3 ovarian cancer cell line for another 24 h. Macrophages were collected for real-time PCR and Western blot to detect the expression of B7-H1, and activation of the NF-${\kappa}B$ signaling pathway. Moreover, supernatants were collected to assay for IL-12, IFN-${\gamma}$ and IL-10 by ELISA. In addition, monocyte-derived macrophages treated with IFN-${\gamma}$ were cocultured with SKOV3 and determined for the expression of B7-H1. Furthermore, the expression of B7-H1 in monocyte-derived macrophages was also evaluated after blocking NF-${\kappa}B$ signaling. Results: The expression of B7-H1 was significantly upregulated in monocyte-derived macrophages treated with rIL-12 or Ad-IL-12-GFP compared with the control groups (p<0.05), accompanied by a remarkable upregulation of IFN-${\gamma}$ (p<0.05), a marked downregulation of IL-10 (p<0.05) and activation of NF-${\kappa}B$ signaling. However, the upregulation of B7-H1 was inhibited by blocking the NF-${\kappa}B$ signaling pathway (p<0.05). Expression of B7-H1 was also increased (p<0.05) in monocyte-derived macrophages treated with IFN-${\gamma}$ and cocultured with SKOV3. By contrast, the expression of B7-H1 in THP-1-derived macrophages was significantly decreased when treated in the same way as monocyte-derived macrophages (p<0.05), and IL-10 was also significantly decreased but IFN-${\gamma}$ was almost absent. Conclusions: IL-12 upregulates the expression of B7-H1 in monocyte-derived macrophages, which is possible though inducing the secretion of IFN-${\gamma}$ and further activating the NF-${\kappa}B$ signal pathway. However, IL-12 downregulates the expression of B7-H1 in THP-1-derived macrophages, associated with a lack of IFN-${\gamma}$ and inhibition of expression of IL-10.

Comparison of the seroconversion rate after primary hepatitis B vaccination and after revaccination of non-responders in full-term infants according to mother's HBsAg seropositivity (산모의 HBsAg 보유 여부에 따른 만삭아의 B형간염 기본접종 및 무반응자에서 재접종 후 항체 양전율에 대한 연구)

  • Kang, Jang Hee;Moon, Jae Won;Kong, Seung Hyun;Hwang, Kwang Su;Mok, Ji Sun;Lee, Hyeon Jung
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.11
    • /
    • pp.1165-1171
    • /
    • 2008
  • Purpose : This study aimed to identify the true extent of non-responsiveness in full-term infants born from HBsAg-negative or HBsAg-positive mothers and vaccinated against hepatitis B virus (HBV) at 0, 1, and 6 months of age and to evaluate the effect of revaccination among non-responders. Methods : The study included 716 full-term infants born in 2004-2007. Of 716, 662 infants (A group) were born to HBsAg-negative mothers and 54 infants (B group: 50, except HBsAg-positive infants) were born to HBsAg-positive mothers. All infants were administered DNA recombinant vaccines at 0, 1, and 6 months of age. B group infants received hepatitis B immunoglobulin at birth. Anti-HBs titers were tested at 7-12 and 9-15 months in A and B groups, respectively. Three revaccination doses were administered to non-responders whose anti-HBs titers were under 10 mIU/ml; revaccinated infants were retested at 1-3 months after last vaccination. The association between HBeAg seropositivity of mother and the failure of HBV immunoprophylaxis was evaluated. Results : The seroconversion rates after primary hepatitis B vaccination were higher in A group (94.1%) than in B group (78%, P<0.001). The seroconversion rates were high in revaccinated infants (A group non-responders: 96.9%, B group non-responders: 87.5%). The failure of HBV immunoprophylaxis was significantly associated with maternal HBeAg seropositivity (P<0.001). Conclusion : The seroconversion rates after primary hepatitis B vaccination were low in B group infants. Revaccination of non-responders in B group was very effective. Therefore, anti-HBs testing and revaccination of B group is very important. Revaccination of non-responders in A group was also very effective. Thus, testing the immune status of infants born to HBsAg-negative mothers even after primary hepatitis B vaccination should be considered. However, to realize this, further studies on the cost-effectiveness of anti-HBs testing in healthy full-term infants are necessary.

Flavonoid Biosynthesis: Biochemistry and Metabolic Engineering (Flavonoid 생합성:생화학과 대사공학적 응용)

  • Park, Jong-Sug;Kim, Jong-Bum;Kim, Kyung-Hwan;Ha, Sun-Hwa;Han, Bum-Soo;Kim, Yong-Hwan
    • Journal of Plant Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.265-275
    • /
    • 2002
  • Flavonoid biosynthesis is one of the most extensively studied areas in the secondary metabolism. Due to the study of flavonoid metabolism in diverse plant system, the pathways become the best characterized secondary metabolites and can be excellent targets for metabolic engineering. These flavonoid-derived secondary metabolites have been considerably divergent functional roles: floral pigment, anticancer, antiviral, antitoxin, and hepatoprotective. Three species have been significant for elucidating the flavonoid metabolism and isolating the genes controlling the flavonoid genes: maize (Zea mays), snapdragon (Antirrhinum majus) and petunia (Prtunia hybrida). Recently, many genes involved in biosynthesis of flavonoid have been isolated and characterized using mutation and recombinant DNA technologies including transposon tagging and T-DNA tagging which are novel approaches for the discovery of uncharacterized genes. Metabolic engineering of flavonoid biosynthesis was approached by sense or antisense manipulation of the genes related with flavonoid pathway, or by modified expression of regulatory genes. So, the use of a variety of experimental tools and metabolic engineering facilitated the characterization of the flavonoid metabolism. Here we review recent progresses in flavonoid metabolism: confirmation of genes, metabolic engineering, and applications in the industrial use.

Differential Intracellular Localization of Mitotic Centromere-associated Kinesin (MCAK) During Cell Cycle Progression in Human Jurkat T Cells (인체 Jurkat T 세포에 있어서 세포주기에 따른 MCAK 단백질의 세포 내 위치변화)

  • Jun Do Youn;Rue Seok Woo;Kim Su-Jung;Kim Young Ho
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.253-260
    • /
    • 2005
  • Mitotic centromere-associated kinesin (MCAK), which is a member of the Kin I (internal motor domain) subfamily of kinesin-related proteins, is known to play a role in mitotic segregation of chromosome during M phase of the cell cycle. In the present study, we have produced a rat polyclonal antibody using human MCAK (HsMCAK) expressed in E. coli as the antigen. The antibody specifically recognized the HsMCAK protein (81 kDa), and could detect its nuclear localization in human Jurkat T cells and 293T cells by Western blot analysis. The specific stage of the cell cycle was obtained through blocking by either hydroxyl urea or nocodazole and subsequent releasing from each blocking for 2, 4, and 7 h. While the protein level of HsMCAK reached a maximum level in the S phase with slight decline in the $G_{2}-M$ phase, the electrophoretic mobility shift from $p81^{MCAK}\;to\;p84^{MCAK}$ began to be induced in the late S phase and reached a maximum level in the $G_{2}/M $ phase, and then it disappeared as the cells enter into the $G_{1}$ phase. Immunocytochemical analysis revealed that HsMCAK protein localized to centrosome and nucleus at the interphase, whereas it appeared to localize to the spindle pole, centromere of the condensed mitotic DNA, spindle fiber, or midbody, depending on the specific stage of the M phase. These results demonstrate that a rat polyclonal antibody raised against recombinant HsMCAK expressed in E. coli specifically detects human MCAK, and indicate that the electrophoretic mobility shift from $p81^{MCAK}\;to\;p84^{MCAK}$, which may be associated with its differential intracellular localization during the cell cycle, fluctuates with a maximum level of the shift at the $G_{2}-M$ phase.

Analysis of Urine Iodine Excretion Decrease by Two-Week Stringent Low Iodine Diet for Remnant Thyroid Ablation with Radioactive Iodine in Korean Patients with Thyroid Cancer; Prospective Study (한국 갑상선암 환자들에서 잔여갑상선 제거를 위한 방사성요오드 치료 전 2주간의 엄격한 저요오드식이에 의한 소변 내 요오드량 감소 분석; 전향적 연구)

  • Choi, Joon-Hyuk;Kim, Hoon-Il;Park, Jang-Won;Song, Eun-Hoon;Ko, Bong-Jin;Cheon, Gi-Jeong;Kim, Byung-Il
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.5
    • /
    • pp.375-382
    • /
    • 2008
  • A low iodine diet (LID) is the recommended preparation for radioactive iodine treatment. However, the recommended duration and stringency of LID are different among each recommendation. More stringent LID is expected in Korea because Korea is a iodine-rich region. We investigated the decrement of urine iodine excretion by two-week stringent LID for remnant thyroid ablation with radioactive iodine in Korean patients with thyroid cancer, prospectively. Material and Method: From November 2006, patients who referred to our hospital for remnant ablation after total thyroidectomy were included in this study. To decrease total body iodine, our protocol included three strategies. First, we checked medication which could inhibit the radioactive iodine uptake. Second, the date of 1-131 treatment was scheduled at least 3 months later if contrast agent had been used. The last strategy was two-week stringent LID education by specialized nutritionist. Before and after two-week stringent LID, 24hr-urine iodine was analyzed respectively. 24hr-urine creatinine was also analyzed for determining more valid 24hr urine sampling subgroup. Results: Total 51 patients were finally enrolled. Average of 24hr-urine iodine excretion was significantly lowered ($787{\pm}2242\;{\rightarrow}\;85{\pm}85\;{\mu}g/d$, p=0.03) after LID and 74.4% of patients reached below the recommended urine iodine excretion level ($<100\;{\mu}g/d$). In subgroup (n=14), similar results was showed ($505{\pm}666\;{\rightarrow}\;99{\pm}116\;{\mu}g/d$, p=0.05) and 78.6% of patients met the criteria. Conclusion: Most patients could reach below the recommended urine iodine level after two-week stringent LID. Therefore, in our opinion, at least two-week stringent LID should be recommended in Korea.

Comparison of Human Sodium/Iodide Symporter (hNIS) Gene Expressions between Lentiviral and Adenoviral Vectors in Rat Mesenchymal Stem Cells (렌티바이러스와 아데노바이러스를 통하여 쥐의 중간엽줄기세포에 사람 나트륨/옥소 공동수송체 유전자를 전달하였을 때의 발현성능 비교)

  • Park, So-Yeon;Kim, Sung-Jin;Lee, Won-Woo;Lee, Heui-Ran;Kim, Hyun-Joo;Chung, June-Key;Kim, Sang-Eun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.5
    • /
    • pp.394-400
    • /
    • 2008
  • Purpose: Quantitative comparison of transgene expression within stem cells between lentivirus and adenovirus-mediated delivery systems has not been reported. Here, we evaluated the human sodium iodide symporter (hNIS) gene expression in rat mesenchymal stem cell (rMSC) transduced by lentivirus or adenovirus, and compared the hNIS expression quantitatively between the two delivery systems. Materials and Methods: Lentiviral-mediated hNIS expressing rMSC (lenti-hNIS-rMSC) was constructed by cloning hNIS gene into pLenti6/UbC/V5-DEST (Invitrogen) to obtain pLenti-hNIS, transducing rMSC with the pLenti-hNIS, and selecting with blasticidin for 3 weeks. Recombinant adenovirus expressing hNIS gene (Rad-hNIS) was produced by homologous recombination and transduction efficiency of Rad-hNIS into rMSC evaluated by Rad-GFP was $19.1{\pm}4.7%$, $54.0{\pm}6.4%$, $85.7{\pm}8.7%$, and $98.4{\pm}1.3%$ at MOI 1, 5, 20, and 100, respectively. The hNIS expressions in lenti-hNIS-rMSC or adeno-hNIS-rMSC were assessed by immunocytochemistry, western blot, and 1-125 uptake. Results: Immunocytochemistry and western blot analyses revealed that hNIS expressions in lenti-hNIS-rMSC were greater than those in adeno-hNIS-rMSC at MOI 20 but lower than at MOI 50. However in vitro 1-125 uptake test demonstrated that iodide uptake in lenti-hNIS-rMSC ($29,704{\pm}6,659\; picomole/10^6\;cells$) was greater than that in adeno-hNIS-rMSC at MOI 100 ($6,168{\pm}2,134\;picomole/10^6\;cells$). Conclusion: Despite lower amount of expressed protein, hNIS function in rMSC was greater by lentivirus than by adenovirus mediated expression. Stem cell tracking using hNIS as a reporter gene should be conducted in consideration of relative vector efficiency for transgene expression.

Multiple Monoclonal Antibodies Produced in a Single Transgenic Plant (형질전환 식물체에서의 복합 단일 항체 단백질 생산)

  • Ahn, Mi-Hyun;Oh, Eun-Yi;Song, Mi-Ra;Lu, Zhe;Kim, Hyun-Soon;Joung, Hyouk;Ko, Ki-Sung
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.123-128
    • /
    • 2009
  • Production of highly valuable immunotherapeutic proteins such as monoclonal antibodies and vaccines using plant biotechnology and genetic engineering has been studied as a popular research field. Plant expression system for mass production of such useful recombinant therapeutic proteins has several advantages over other existing expression systems with economical and safety issues. Immunotherapy of multiple monoclonal antibodies, which can recognize multiple targeting including specific proteins and their glycans highly expressed on the surface of cancer cells, can be an efficient treatment compared to a single targeting immunotherapy using a single antibody. In this study, we have established plant production system to express two different targeting monoclonal antibodies in a single transgenic plant through crossing fertilization between two different transgenic plants expressing anti-colorectal cancer mAbCO17-1A and anti-breast cancer mAbBR55, respectively. The F1 seedlings were obtained cross fertilization between the two transgenic parental plants. The presence, transcription, and protein expression of heavy chain (HC) and light chain (LC) genes of both mAbs in the seedlings were investigated by PCR, RT-PCR, and immunoblot analyses, respectively. Among all the seedlings, some seedlings did not carry or transcribe the HC and LC genes of both mAbs. Thus, the seedlings with presence and transcription of HC and LC genes of both mAbs were selected, and the selected seedlings were confirmed to have relatively stronger density of HC and LC protein bands compared to the transgenic plant expressing only each mAb. These results indicate that the F1 seedling plant with carrying both mAb genes was established. Taken together, plant crossing fertilization can be applied to generate an efficient production system expressing multiple monoclonal antibodies for immunotherapy in a single plant.

Up-regulation of CD11c Expression on Human Acute Myelogenous Leukemia Cells by Flt-3 Ligand (인간 골수성 백혈병 세포에서 Flt-3 수용체 리간드에 의한 CD11c 발현의 증가)

  • Xu, Qi;Kwak, Jong-Young
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1690-1697
    • /
    • 2009
  • CD11c and costimulatory molecules such as CD80 and CD86 express mainly in dendritic cells (DCs). In this study, we investigated the biologic effects of recombinant Fms-like tyrosine kinase-3 (Flt-3) ligand on the expression of DC surface markers, including CD11c in leukemia cell lines, such as KG-1, HL-60, NB4, and THP-1 cells. The expression of the Flt-3 receptor was found in NB4 and HL-60 cells, as well as KG-1 cells, but not in THP-1 cells. When KG-1 cells were cultured in a medium containing Flt-3 ligand or granulocyte macrophage-colony stimulating factor (GM-CSF) plus tumor necrosis factor (TNF)-$\alpha$, cell proliferation was inhibited and the expression levels of CD11c, major histocompatibility complex (MHC)-I, and MHC-II were increased in the cells. Flt-3 ligand also increased the expression level of CD11c on HL-60 and NB4 cells, but not on THP-1 cells. In comparison with CD11c expression, the expression level of CD11b on KG-1 cells, but not on NB4 and HL-60 cells, was slightly increased by Flt-3 ligand. Flt-3 ligand induced phosphorylation of extracellular signal-regulated kinase-1/2 (ERK-1/2) and p38-mitogen-activated protein kinase (p38-MAPK) in KG-1 cells, and the up-regulation of CD11c expression by Flt-3 ligand in the cells was abrogated by PD98059, an inhibitor of MEK. The results suggest that Flt-3 ligand up-regulates DC surface markers on $CD34^+$ myelomonocytic KG-1 cells, as well as promyelocytic leukemia cells, and that the differentiation of the leukemia cells into DC-like cells by Flt-3 ligand is mediated by ERK-1/2 activity.

Secretory Expression System of Xylose Reductase (GRE3) for Optimal Production of Xylitol (Xylitol 생산에 최적화된 xylose reductase (GRE3)의 분비발현 시스템)

  • Jung, Hoe-Myung;Kim, Jae-Woon;Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1376-1382
    • /
    • 2016
  • Xylitol is widely used in the food and medical industry. It is produced by the reduction of xylose (lignocellulosic biomass) in the Saccharomyces cerevisiae strain, which is considered genetically safe. In this study, the expression system of the GRE3 (YHR104W) gene that encodes xylose reductase was constructed to efficiently produce xylitol in the S. cerevisiae strain, and the secretory production of xylose reductase was investigated. To select a suitable promoter for the expression of the GRE3 gene, pGMF-GRE3 and pAMF-GRE3 plasmid with GAL10 promoter and ADH1 promoter, respectively, were constructed. The mating factor ${\alpha}$ ($MF{\alpha}$) signal sequence was also connected to each promoter for secretory production. Each plasmid was transformed into S. cerevisiae $SEY2102{\Delta}trp1$, and $SEY2102{\Delta}trp1$/pGMF- GRE3 and $SEY2102{\Delta}trp1$/pAMF-GRE3 transformants were selected. In the $SEY2102{\Delta}trp1$/pGMF-GRE3 strain, the total activity of xylose reductase reached 0.34 unit/mg-protein when NADPH was used as a cofactor; this activity was 1.5 fold higher than that in $SEY2102{\Delta}trp1$/pAMF-GRE3 with ADH1 as the promoter. The secretion efficiency was 91% in both strains, indicating that most of the recombinant xylose reductase was efficiently secreted in the extracellular fraction. In a baffled flask culture of the $SEY2102{\Delta}trp1$/pGMF-GRE3 strain, 12.1 g/l of xylitol was produced from 20 g/l of xylose, and ~83% of the consumed xylose was reduced to xylitol.

Partial Purification of OsCPK11 from Rice Seedlings and Its Biochemical Characterization (벼 유식물에서 OsCPK11의 부분 정제 및 생화학적 특성 규명)

  • Shin, Jae-Hwa;Kim, Sung-Ha
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.137-146
    • /
    • 2020
  • Calcium is one of the important secondary signaling molecules in plant cells. Calcium-dependent protein kinases (CDPK)-the sensor proteins of Ca2+ and phosphorylating enzymes-are the most abundant serine/threonine kinases in plant cells. They convert and transmit signals in response to various stimuli, resulting in specific responses in plants. In rice, 31 CDPK gene families have been identified, which are mainly involved in plant growth and development and are known to play roles in response to various stress conditions. However, little is known about the biochemical characteristics of CDPK proteins. In this study, OsCPK11-a CDPK in rice-was partially purified, and its biochemical characteristics were found. Partially purified OsCPK11 from rice seedlings was obtained by three-step column chromatography that involved anion exchange chromatography consisting of DEAE, hydrophobic interaction chromatography consisting of phenyl-Sepharose, and gel filtration chromatography consisting of Sephacryl-200HR. An in vitro kinase assay using partially purified OsCPK11 was also performed. This partially purified OsCPK11 had a molecular weight of 54 kDa and showed a strong hydrophobic interaction with the hydrophobic resin. In vitro kinase assay showed that the OsCPK11 also had Ca2+-dependent autophosphorylation activity. The OsCPK11 phosphorylated histone III-S, and the optimum pH for its kinase activity was found to be 7.5~8.0. The native OsCPK11 shared several biochemical characteristics with recombinant OsCPK11 studied previously, and both had Ca2+-dependent autophosphorylation activity and favored histone III-S as a substrate for kinase activity, which also had a Ca2+-dependence.