• Title/Summary/Keyword: Reclosing time

검색결과 34건 처리시간 0.032초

분산전원을 고려한 적응적 재폐로 기법 (An Adaptive Reclosing Technique Considering the Distributed Generation)

  • 서훈철;김철환;여상민
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.227-232
    • /
    • 2007
  • The autoreclosing is applied to power system for maintaining system stability and continuity of supply. Developments on distributed generation(DG) grows significantly by environmental issues and economical issues. If the DG is connected to distribution system, the DG influences the technical aspects such as power quality, protection and stability. It causes the challenges to protection, especially to reclosing. In order to achieve reliability and safety of the distribution system, the rules and guidelines suggest that the DG units should be rapidly disconnected from the network before the reclosing. If the DG is disconnected whenever the fault occurs, it cannot be utilized effectively. This paper presents the adaptive reclosing algorithm considering the DG. The algorithm consists of angle oscillation's judgment, EEEAC(Emergency Expanded Equal-Area Criterion), calculation of optimal reclosing time and re-connection algorithm. The simulation is implemented for the DG technology by using EMTP MODELS. The simulation results show that the transient stability is maintained and the DG is protected against disturbance.

BESS가 연계된 배전계통에서 새로운 재폐로 기법 (New Reclosing Technique in Distribution System with Battery Energy Storage System)

  • 서훈철
    • 조명전기설비학회논문지
    • /
    • 제30권1호
    • /
    • pp.21-27
    • /
    • 2016
  • The study concerning about the grid connection of the large-capacity battery energy storage system(BESS) is increasing. However, the protection study which is necessary to maintain the reliability of distribution system has been hardly performed. Therefore, this paper analyzes the effect of reclosing among protection issues in distribution system with BESS and proposes the new relcosing method. To verify the proposed method, the BESS, distribution system, and proposed method are modeled by using EMTP/ATPDraw and the various simulations according to the fault clearing time are performed. The simulation results show that the reclosing in distribution system with BESS is successfully performed by proposed method and the operation of BESS is not affected from reclosing.

765 kV 송전선로 보호를 위한 아크사고 시뮬레이션 및 적응적 자동재폐로 대책 (The Arcing Faults Simulation and Adaptive Autoreclosure Strategy for 765 kV Transmission Line Protection)

  • 안상필;김철환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권11호
    • /
    • pp.1365-1373
    • /
    • 1999
  • In many countries including Korea, in order to transmit the more electric power, the higher transmission line voltage is inevitable. So, a rapid reclosing scheme is important for EHV/UHV transmission lines to ensure requirements for high reliability of main lines. A critical aspect of reclosing operation is the extinction of the secondary arc since it must extinguish before successful reclosure can occur. Therefore the accurate simulation techniques of arcing faults are of importance. And successful reclosing switching can be accomplished by adopting a proper method such as HSGS and hybrid scheme to reduce the secondary arc extinction time. First of all, this paper discusses a suggested arc model, which have time dependent resistance for primary arc and piecewise linear approximated arc model for secondary arc. And this simulation technique is applied to Korean 765 kV transmission lines. Also hybrid scheme is simulated and evaluated for the purpose of shortening dead time. For adaptive reclosing scheme, variable dead time control algorithm is suggested. Two kinds of algorithm are tested. One is max tracking algorithm and the other is rms tracking algorithm. According to simulation results, rms tracking has less errors than max tracking. Therefore rms tracking is applied to Korean 765 kV transmission lines with hybrid scheme.

  • PDF

실계통적용을 위한 초전도한류시스템에 대한 연구 (A study on SFCL systems for power system application)

  • 이승렬;김종율;윤재영
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권1호
    • /
    • pp.51-56
    • /
    • 2005
  • The recovery time of developing SFCL(Superconducting Fault Current Limiter) has an uncertainty. In general, the recovery time is estimated at 1 sec and more, even though the Process of SFCL technology is considered. However, auto reclosing time of circuit breaker is 0.3 sec in Korean power system. It is impossible to apply only one SFCL to power system because the recovery time is over the reclosing time of protection system. This study proposes two new SFCL systems for power system application. The proposed systems consider auto reclosing action for the protection in practical power system and consist of tow parallel SFCLS.

분산전원을 고려한 재폐로 기법 (A Reclosing Technique considering the Distributed Generation)

  • 서훈철;김철환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.270-271
    • /
    • 2006
  • This paper presents the reclosing algorithm considering the DG(Distributed Generation). The algorithm consists of angle oscillation's judgment, EEEAC(Emergency Extended Equal-Area Criterion), calculation of optimal reclosing time and reconnection algorithm. The simulation is implemented for the three different DG technologies by using EMTP MODELS.

  • PDF

Carrier 신호를 이용한 배전계통의 새로운 재폐로 방식 (A Novel Reclosing Scheme in Distribution System using Carrier Signal)

  • 고윤태;서훈철;이상봉;김철환;김재철;현옥배
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2115-2121
    • /
    • 2009
  • This paper proposes the new reclosing scheme considering the recovery time of SFCL in distribution systems which is based on variable dead time control. The main idea is that it uses the carrier signal to distinguish whether the fault is instantaneous or permanent after tripping the line by recloser. The system and SFCL is modeled by using Electromagnetic Transient Program(EMTP) and the validity of the reclosing scheme presented in this paper is analyzed according to the fault resistance, the recovery time of SFCL and the fault clearing time.

초전도 한류기를 고려한 재폐로 차단기 동작 scheme 개발 (Development of new reclosing scheme considering the superconducting fault current limiter)

  • 고윤태;서훈철;이상봉;김철환;김재철;현옥배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.135_136
    • /
    • 2009
  • This paper proposes the new reclosing scheme considering the recovery time of SFCL in distribution systems which is based on variable dead time control. The main idea is that it uses the carrier signal to distinguish whether the fault is instantaneous or permanent following initial recloser opening. The system and SFCL is modeled by using Electromagnetic Transient Program(EMTP) and the validity of the reclosing scheme represented in this paper is analyzed according to the value of the fault resistance and the time of the fault removal.

  • PDF

A Novel Algorithm for Reducing Restoration Time in Smart Distribution Systems Utilizing Reclosing Dead Time

  • Hussain, Akhtar;Choi, Myeon-Song;Lee, Seung-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.1805-1811
    • /
    • 2014
  • After an occurrence of a fault in any distribution system, it is desired to limit the effects of the fault to smallest possible area and restore the un-faulty areas as soon as possible. Due the advancements in communication technologies, this task can be achieved in multiple efficient ways. In order to decrease the restoration time in the Smart Grid Distribution Management System (SDMS) a communication based algorithm is proposed in this paper, in which the restoration can be done during reclosing. This paper also analyzes various communication failures with power failures cases including the entire network of communication failures. Results of all these cases have been verified by doing simulations.

A Novel AC Solid-State Circuit Breaker with Reclosing and Rebreaking Capability

  • Kim, Jin-Young;Choi, Seung-Soo;Kim, In-Dong
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.1074-1084
    • /
    • 2015
  • These days, the widespread use of sensitive loads and distributed generators makes the solid-state circuit breaker (SSCB) an essential component in power circuits to achieve a high power quality for AC Grids. In traditional AC SSCB using SCRs, some auxiliary mechanical devices are required to make the reclosing operation possible before fault recovery. However, the proposed AC SSCB can break quickly and then be reclosed without auxiliary mechanical devices even during the short-circuit fault. Moreover, its fault current breaking time is short and its SSCB reclosing operation is fast. This results in a reduction of the economic losses due to fault currents and power outages. Through simulations and experiments on short-circuit faults, the performance characteristics of the proposed AC SSCB are verified. A design guideline is also suggested to apply the proposed AC SSCB to various AC grids.

500 kV 수평배열 1회선 송전선로의 재폐로 무전압시간 산정 (Calculation of Reclosing Dead Time of 500 kV Horizontal Single Circuit Transmission Line)

  • 심응보;곽주식;주형준;박흥석;강연욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.641-643
    • /
    • 2005
  • It is usual to operate the long transmission line with transposition of each phase in order to avoid voltage unbalance due to unbalanced capacitances at each phase of the line end. This paper described the Ferranti voltage rise of line end, charging current and secondary arc current according to the transposition of line or not. The positive and negative sequence current was derived by the phase current, and then the unbalanced rate was calculated. Then, we obtained the reclosing dead time of the single phase reclosing scheme for 500 kV single circuit horizontal arrangement transmission line system.

  • PDF