• Title/Summary/Keyword: Receptor protein

Search Result 2,359, Processing Time 0.027 seconds

Overexpression of tumor necrosis factor receptor-associated protein 1 (TRAP1), leads to mitochondrial aberrations in mouse fibroblast NIH/3T3 cells

  • Im, Chang-Nim;Seo, Jeong-Sun
    • BMB Reports
    • /
    • v.47 no.5
    • /
    • pp.280-285
    • /
    • 2014
  • Cancer cells undergo uncontrolled proliferation, and aberrant mitochondrial alterations. Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial heat shock protein. TRAP1 mRNA is highly expressed in some cancer cell lines and tumor tissues. However, the effects of its overexpression on mitochondria are unclear. In this study, we assessed mitochondrial changes accompanying TRAP1 overexpression, in a mouse cell line, NIH/3T3. We found that overexpression of TRAP1 leads to a series of mitochondrial aberrations, including increase in basal ROS levels, and decrease in mitochondrial biogenesis, together with a decrease in peroxisome proliferator-activated receptor gamma coactivator-$1{\alpha}$ (PGC-$1{\alpha}$) mRNA levels. We also observed increased extracellular signal-regulated kinase (ERK) phosphorylation, and enhanced proliferation of TRAP1 overexpressing cells. This study suggests that overexpression of TRAP1 might be a critical link between mitochondrial disturbances and carcinogenesis.

Mutations in the tyrosine kinase domain of the EGFR gene are rare in the Korean Oral Squamous Cell Carcinoma

  • Lee, Eun-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.101-106
    • /
    • 2016
  • The epidermal growth factor receptor(EGFR) protein kinase signaling is an important pathway in cancer development and recently reported that EGFR and its kinase domain molecules are mutated in various of cancers including head and neck cancer. Functional deregulation of EGFR due to mutations in coding exons and copy number amplification is the most common event in cancers, especially among receptor tyrosine kinases(TK). We have analyzed Korean oral squamous cell carcinomas (OSCC) cell lines for mutations in EGFRTK. Exons encoding the hot-spot regions in the TK domain of EGFR (exons 17 to 23) were amplified by using polymerase chain reaction(PCR) and sequenced directly. EGFR expression was also analyzed in 8 OSCC cell lines using western blotting. Data analysis of the EGFR exons 17 to 23 coding sequences did not show any mutations in the 8 OSCC cell lines that were analyzed. The absence of mutations indicate that protein overexpression might be responsible for activation rather than mutation.

Structural Studies of G Protein-Coupled Receptors

  • Zhang, Dandan;Zhao, Qiang;Wu, Beili
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.836-842
    • /
    • 2015
  • G protein-coupled receptors (GPCRs) constitute the largest and the most physiologically important membrane protein family that recognizes a variety of environmental stimuli, and are drug targets in the treatment of numerous diseases. Recent progress on GPCR structural studies shed light on molecular mechanisms of GPCR ligand recognition, activation and allosteric modulation, as well as structural basis of GPCR dimerization. In this review, we will discuss the structural features of GPCRs and structural insights of different aspects of GPCR biological functions.

Development of Olfactory Biosensor Using Olfactory Receptor Proteins Expressed in E. coli

  • Seong, Jong-Hwan;Go, Hwi-Jin;Park, Tae-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.639-642
    • /
    • 2003
  • Olfactory receptor protein ODR10 was expressed in E.coli as fusion protein with GST and His6 Tag. Crude membrane extract of the expressed protein was coated on the surface of quartz crystal microbalance, and the interaction of the ODR10 with several odorants was examined. Although the expression level was very low, quartz crystal microbalance showed that the expressed protein interacted most strongly with diacetyl (butanedione), which is known to bind to the ODR10 protein selectively. The interaction between ODR10 and diacetyl was $5{\sim}10$ times stronger than the interaction between ODR10 and other odorants. Thus, E. coli cells expressing the olfactory receptor protein could be used as an olfactory biosensor. Also, such system could be used to test which olfactory receptor reacts specifically with which odorant molecules, since there has been no cheap and convenient way to test the interaction of olfactory receptors and odorant molecules yet.

  • PDF

Can oliceridine (TRV130), an ideal novel µ receptor G protein pathway selective (µ-GPS) modulator, provide analgesia without opioid-related adverse reactions?

  • Ok, Hwoe Gyeong;Kim, Su Young;Lee, Su Jung;Kim, Tae Kyun;Huh, Billy K;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.31 no.2
    • /
    • pp.73-79
    • /
    • 2018
  • All drugs have both favorable therapeutic and untoward adverse effects. Conventional opioid analgesics possess both analgesia and adverse reactions, such as nausea, vomiting, and respiratory depression. The opioid ligand binds to ${\mu}$ opioid receptor and non-selectively activates two intracellular signaling pathways: the G protein pathway induce analgesia, while the ${\beta}$-arrestin pathway is responsible for the opioid-related adverse reactions. An ideal opioid should activate the G protein pathway while deactivating the ${\beta}$-arrestin pathway. Oliceridine (TRV130) has a novel characteristic mechanism on the action of the ${\mu}$ receptor G protein pathway selective (${\mu}$-GPS) modulation. Even though adverse reactions (ADRs) are significantly attenuated, while the analgesic effect is augmented, the some residual ADRs persist. Consequently, a G protein biased ${\mu}$ opioid ligand, oliceridine, improves the therapeutic index owing to increased analgesia with decreased adverse events. This review article provides a brief history, mechanism of action, pharmacokinetics, pharmacodynamics, and ADRs of oliceridine.

Receptor-Mediated Endocytosis of Hepatitis B Virus PreS1d Protein in EBV-Transformed B-Cell line

  • Park, Jung-Hyun;Cho, Eun-Wie;Lee, Dong-Gun;Park, Jung-Min;Lee, Yun-Jung;Choi, Eun-A;Kim, Kill-Lyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.844-850
    • /
    • 2000
  • The specific binding and internalization of viral particles is an essential step for the successful infection of viral pathogens. In the case of the hepatitis B virus (HBV), virions bind to the host cell via the preS domain of the viral surface antigen and are subsequently internalized by endocytosis. HBV-preS specific receptors are primarily expressed on hepatocytes, however, viral DNA and proteins have also been detected in extrahepatic sites, suggsting that celluar recepators for HBV may also exist on extrahepatic cells. Recently, an EBV-transformed B-cell line was identified onto which the preS region binds in a receptor-ligand specific manner. In this study, this specific interaction was further characterized, and the binding region within the preS protein was locaized. Also the internalization after host cell attachment was visualized and analyzed by fluorescence-labeled HBV-preS1 proteins using confocal microscopy. Energy depletion by sodium azide treatment effectively inhibited the internalization of the membrane-bound preS1 ligands, thereby indicating an energy-dependent receptor-mediated endocytotic pathway. Accordingly, the interaction of HBV-pres! with this specific B-cell line may serve as an effective model for an infection pathway in extrahepatic cells.

  • PDF

Optimization of the experimental conditions for structural studies of the second transmembrane domain from human wild-type & mutant melanocortin-4 receptor

  • Gang, Ga-Ae;Choi, Sung-Sub;Park, Tae-Joon;Kim, Yong-Ae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.2
    • /
    • pp.88-104
    • /
    • 2010
  • Human melanocortin-4 receptor (hMC4R) has a critical role in part of energy homeostasis, and their heterozygous mutations related in genetic cause of severe human obesity. In order to study the structure and function of these membrane proteins, it is important to prepare the samples. However, the preparation of transmembrane peptide is seriously difficult and time-consuming. Overexpression and purification of membrane proteins was reported to be difficult due to their innate insoluble and toxic properties. Among the many difficulties, the most important is the difficulty in obtaining sufficient quantities of purified protein. Recently, we succeed to produce large amounts of the second transmembrane domain from the wild-type hMC4R (wt-TM2) and D90N mutant hMC4R (m-TM2) and proposed the structural difference of them in membrane-like environments. In this paper, we demonstrate the optimization procedures to express and purify wt-TM2 or m-TM2 peptides, and solution NMR studies in different detergents to get high-resolution spectra were also described.

Mass Spectrometry-Based Screening Platform Reveals Orco Interactome in Drosophila melanogaster

  • Yu, Kate E.;Kim, Do-Hyoung;Kim, Yong-In;Jones, Walton D.;Lee, J. Eugene
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.150-159
    • /
    • 2018
  • Animals use their odorant receptors to receive chemical information from the environment. Insect odorant receptors differ from the G protein-coupled odorant receptors in vertebrates and nematodes, and very little is known about their protein-protein interactions. Here, we introduce a mass spectrometric platform designed for the large-scale analysis of insect odorant receptor protein-protein interactions. Using this platform, we obtained the first Orco interactome from Drosophila melanogaster. From a total of 1,186 identified proteins, we narrowed the interaction candidates to 226, of which only two-thirds have been named. These candidates include the known olfactory proteins Or92a and Obp51a. Around 90% of the proteins having published names likely function inside the cell, and nearly half of these intracellular proteins are associated with the endomembrane system. In a basic loss-of-function electrophysiological screen, we found that the disruption of eight (i.e., Rab5, CG32795, Mpcp, Tom70, Vir-1, CG30427, Eaat1, and CG2781) of 28 randomly selected candidates affects olfactory responses in vivo. Thus, because this Orco interactome includes physiologically meaningful candidates, we anticipate that our platform will help guide further research on the molecular mechanisms of the insect odorant receptor family.

Up-Regulation of Interleukin-4 Receptor Expression by Interleukin-4 and CD40 Ligation via Tyrosine Kinase-Dependent Pathway

  • Kim, Hyun-Il;So, Eui-Young;Yoon, Suk-Ran;Han, Mi-Young;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.83-88
    • /
    • 1998
  • Recently a B cell surface molecule, CD40, has emerged as a receptor mediating a co-stimulatory signal for B cell proliferation and differentiation. To investigate the mechanism of synergy between interleukin-4 (IL-4) and CD40 ligation in B cell activation, we have examined the effect of CE40 cross-linking on the IL-4 receptor expression in human B cells using anti-CE40 antibody. We observed that IL-4 and anti-CD40 both induce IL-4 receptor gene expression with a rapid kinetics resulting in a noticeable accumulation of IL-4 receptor mRNA within 4 h. While IL-4 caused a dose-dependent induction of surface IL-4 receptor expression, the inclusion of anti-CD40 in the IL-4-treated culture, further up-regulated the IL-4-induced IL-4 receptor expression as analyzed by flow cytometry. Pretreatment of B cells with inhibitors of protein tyrosine kinase (PTK) resulted in a significant inhibition of both the IL-4- and anti-CD40-induced IL-4 receptor mRNA levels, while protein kinase C (PKC) inhibitors had no effects. These results suggest that IL-4 and CD40 ligation generate B cell signals, which via PTK-dependent pathways, lead to the synergistic induction of IL-4 receptor gene expression. The rapid induction of IL-4 receptor gene expression through the tyrosine kinase-mediated signal transduction by B cell activating stimuli, would provide cells capacity for an efficient response to IL-4 in the early phase of IL-4 action, and may in part constitute the molecular basis of the reported anti-CD40 co-stimulatory effect on the IL-4-induced response.

  • PDF

Antinarcotic Effect of Ginseng (인삼의 마약중독 해독효과)

  • Oh, Sei-Kwan
    • Journal of Ginseng Research
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Ginseng saponin has been shown to inhibit the development of dependence on morphine, cocaine, methamphetamine, but the antinarcotics effects of ginseng on nalbuphine remains still largely unknown. Ginseng administration attenuated the naloxone-induced jumping behavior on nalbuphine dependent mice. The development of morphine dependence was mediated through ${\mu}-opioid$ receptor, however, development of nalbuphine dependence was mediated through ${\kappa}-opioid$ receptor. However, it was found that the efficacy of analgesic antagonism of GTS was mediated through the serotonergic mechanism, not mediated through the opioid receptor. In addition, ginseng administration modulated cellular signal transduction in the brain. The increased NMDA receptor subunit (NR1, pNR1), phosphate extracellular signal regulated protein kinase (pERK), phosphate cAMP response element binding protein (pCREB) expression by nalbuphine was decreased by the administration of ginseng powder in cortex, hippocampus, striatum of rat brain. These results suggest that ginseng could be one of the targets of antinarcotic therapies to reduce the development of tolerance and dependence on nalbuphine as well as morphine.