Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.5.174

Overexpression of tumor necrosis factor receptor-associated protein 1 (TRAP1), leads to mitochondrial aberrations in mouse fibroblast NIH/3T3 cells  

Im, Chang-Nim (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine)
Seo, Jeong-Sun (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine)
Publication Information
BMB Reports / v.47, no.5, 2014 , pp. 280-285 More about this Journal
Abstract
Cancer cells undergo uncontrolled proliferation, and aberrant mitochondrial alterations. Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial heat shock protein. TRAP1 mRNA is highly expressed in some cancer cell lines and tumor tissues. However, the effects of its overexpression on mitochondria are unclear. In this study, we assessed mitochondrial changes accompanying TRAP1 overexpression, in a mouse cell line, NIH/3T3. We found that overexpression of TRAP1 leads to a series of mitochondrial aberrations, including increase in basal ROS levels, and decrease in mitochondrial biogenesis, together with a decrease in peroxisome proliferator-activated receptor gamma coactivator-$1{\alpha}$ (PGC-$1{\alpha}$) mRNA levels. We also observed increased extracellular signal-regulated kinase (ERK) phosphorylation, and enhanced proliferation of TRAP1 overexpressing cells. This study suggests that overexpression of TRAP1 might be a critical link between mitochondrial disturbances and carcinogenesis.
Keywords
ERK; Mitochondria; PGC-$1{\alpha}$; ROS; TRAP1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hatefi, Y. (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu. Rev. Biochem. 54, 1015-1069.   DOI   ScienceOn
2 Saraste, M. (1999) Oxidative phosphorylation at the fin de siecle. Science 283, 1488-1493.   DOI   ScienceOn
3 Scarpulla, R. C. (2006) Nuclear control of respiratory gene expression in mammalian cells. J. Cell. Biochem. 97, 673-683.   DOI   ScienceOn
4 Baker, D. J., Betik, A. C., Krause, D. J. and Hepple, R. T. (2006) No decline in skeletal muscle oxidative capacity with aging in long-term calorically restricted rats: effects are independent of mitochondrial DNA integrity. J. Gerontol. A. Biol. Sci. Med. Sci. 61, 675-684.   DOI
5 Modica-Napolitano, J. S. and Singh, K. K. (2004) Mitochondrial dysfunction in cancer. Mitochondrion 4, 755-762.   DOI   ScienceOn
6 Toyokuni, S., Okamoto, K., Yodoi, J. and Hiai, H. (1995) Persistent oxidative stress in cancer. FEBS Lett. 358, 1-3.   DOI   ScienceOn
7 Konstantinov, A. A., Peskin, A. V., Popova, E., Khomutov, G. B. and Ruuge, E. K. (1987) Superoxide generation by the respiratory chain of tumor mitochondria. Biochim. Biophys. Acta 894, 1-10.   DOI   ScienceOn
8 Hilger, R. A., Scheulen, M. E. and Strumberg, D. (2002) The Ras-Raf-MEK-ERK pathway in the treatment of cancer. Onkologie 25, 511-518.   DOI   ScienceOn
9 Rooney, P. S., Robinson, M. H., Clarke, P. A., Hardcastle, J. D. and Armitage, N. C. (1993) Individuals with a strong family history of colorectal cancer demonstrate abnormal rectal mucosal proliferation. Br. J. Surg. 80, 249-251.   DOI   ScienceOn
10 Terpstra, O. T. van Blankenstein, M., Dees, J. and Eilers, G. A. (1987) Abnormal pattern of cell proliferation in the entire colonic mucosa of patients with colon adenoma or cancer. Gastroenterology 92, 704-708.   DOI
11 Modica-Napolitano, J. S., Kulawiec, M. and Singh, K. K. (2007) Mitochondria and human cancer. Curr. Mol. Med. 7, 121-131.   DOI   ScienceOn
12 Kroemer, G. (2006) Mitochondria in cancer. Oncogene 25, 4630-4632.   DOI   ScienceOn
13 Cuezva, J. M., Krajewska, M., de Heredia, M. L., Krajewski, S., Santamaria, G., Kim, H., Zapata, J. M., Marusawa, H., Chamorro, M. and Reed, J. C. (2002) The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res. 62, 6674-6681.
14 Pridgeon, J. W., Olzmann, J. A., Chin, L. S. and Li, L. (2007) PINK1 Protects against Oxidative Stress by Phosphorylating Mitochondrial Chaperone TRAP1. PLoS Biol. 5, e172.   DOI
15 Lopez-Rios, F., Sanchez-Arago, M., Garcia-Garcia, E., Ortega, A. D., Berrendero, J. R., Pozo-Rodriguez, F., Lopez-Encuentra, A., Ballestin, C. and Cuezva, J. M. (2007) Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res. 67, 9013-9017.   DOI   ScienceOn
16 Felts, S. J., Owen, B. A., Nguyen, P., Trepel, J., Donner, D. B. and Toft, D. O. (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 275, 3305-3312.   DOI   ScienceOn
17 Hua, G., Zhang, Q. and Fan, Z. (2007) Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis. J. Biol. Chem. 282, 20553-20560.   DOI   ScienceOn
18 Im, C. N., Lee, J. S., Zheng, Y. and Seo, J. S. (2007) Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J. Cell. Biochem. 100, 474-486.   DOI   ScienceOn
19 Song, H. Y., Dunbar, J. D., Zhang, Y. X., Guo, D. and Donner, D. B. (1995) Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J. Biol. Chem. 270, 3574-3581.   DOI   ScienceOn
20 Kang, B. H., Plescia, J., Dohi, T., Rosa, J., Doxsey, S. J. and Altieri, D. C. (2007) Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131, 257-270.   DOI   ScienceOn
21 Vargas-Roig, L. M., Fanelli, M. A., Lopez, L. A., Gago, F. E., Tello, O., Aznar, J. C. and Ciocca, D. R. (1997) Heat shock proteins and cell proliferation in human breast cancer biopsy samples. Cancer Detect. Prev. 21, 441-451.
22 Abeliovich, A. (2007) Parkinson's disease: pro-survival effects of PINK1. Nature 448, 759-760.   DOI   ScienceOn
23 Ciocca, D. R., Oesterreich, S., Chamness, G. C., McGuire, W. L. and Fuqua, S. A. (1993) Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J. Natl. Cancer Inst. 85, 1558-1570.   DOI   ScienceOn
24 Atkins, D., Lichtenfels, R. and Seliger, B. (2005) Heat shock proteins in renal cell carcinomas. Contrib. Nephrol. 148, 35-56.
25 Bianchi, M. S., Bianchi, N. O. and Bailliet, G. (1995) Mitochondrial DNA mutations in normal and tumor tissues from breast cancer patients. Cytogenet. Cell Genet. 71, 99-103.   DOI
26 Luciakova, K. and Kuzela, S. (1992) Increased steady-state levels of several mitochondrial and nuclear gene transcripts in rat hepatoma with a low content of mitochondria. Eur. J. Biochem. 205, 1187-1193.   DOI   ScienceOn
27 Heerdt, B. G., Houston, M. A. and Augenlicht, L. H. (2006) Growth properties of colonic tumor cells are a function of the intrinsic mitochondrial membrane potential. Cancer Res. 66, 1591-1596.   DOI   ScienceOn
28 Heerdt, B. G., Houston, M. A. and Augenlicht, L. H. (2005) The intrinsic mitochondrial membrane potential of colonic carcinoma cells is linked to the probability of tumor progression. Cancer Res. 65, 9861-9867.   DOI   ScienceOn
29 Szatrowski, T. P. and Nathan, C. F. (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794-798.
30 Penta, J. S., Johnson, F. M., Wachsman, J. T. and Copeland, W. C. (2001) Mitochondrial DNA in human malignancy. Mutat. Res. 488, 119-133.   DOI   ScienceOn
31 Schubbert, S., Shannon, K. and Bollag, G. (2007) Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer 7, 295-308.   DOI   ScienceOn
32 Nottage, M. and Siu, L. L. (2002) Rationale for Ras and raf-kinase as a target for cancer therapeutics. Curr. Pharm. Des. 8, 2231-2242.   DOI   ScienceOn
33 Engman, D. M., Kirchhoff, L. V. and Donelson, J. E. (1989) Molecular cloning of mtp70, a mitochondrial member of the hsp70 family. Mol. Cell. Biol. 9, 5163-5168.   DOI
34 Bolliger, L., Deloche, O., Glick, B. S., Georgopoulos, C., Jeno, P., Kronidou, N., Horst, M. Morishima, N. and Schatz, G. (1994) A mitochondrial homolog of bacterial GrpE interacts with mitochondrial hsp70 and is essential for viability. EMBO J. 13, 1998-2006.
35 Sciacovelli, M., Guzzo, G., Morello. V., Frezza, C., Zheng, L., Nannini, N., Calabrese, F., Laudiero, G., Esposito, F., Landriscina, M., Defilippi, P., Bernardi, P. and Rasola, A. (2013) The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metab. 17, 988-999.   DOI   ScienceOn
36 Polyak, K., Li, Y., Zhu, H., Lengauer, C. , Willson, J. K., Markowitz, S. D., Trush, M. A., Kinzler, K. W. and Vogelstein, B. (1998) Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat. Genet. 20, 291-293.   DOI   ScienceOn
37 Isidoro, A., Martinez, M., Fernandez, P. L., Ortega, A. D., Santamaria, G., Chamorro, M., Reed, J. C. and Cuezva, J. M. (2004) Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem. J. 378, 17-20.   DOI   ScienceOn
38 Masuda, Y., Shima, G., Aiuchi, T., Horie, M., Hori, K., Nakajo, S., Kajimoto, S., Shibayama-Imazu, T. and Nakaya, K. (2004) Involvement of tumor necrosis factor receptor-associated protein 1 (TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J. Biol. Chem. 279, 42503-42515.   DOI   ScienceOn