• Title/Summary/Keyword: Receptor activator of nuclear factor kappa-B ligand

Search Result 106, Processing Time 0.03 seconds

2-O-digalloyl-1,3,4,6-tetra-O-galloyl-β-D-glucose isolated from Galla Rhois suppresses osteoclast differentiation and function by inhibiting NF-κB signaling

  • Ihn, Hye Jung;Kim, Tae Hoon;Kim, Kiryeong;Kim, Gi-Young;Jeon, You-Jin;Choi, Yung Hyun;Bae, Jong-Sup;Kim, Jung-Eun;Park, Eui Kyun
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.409-414
    • /
    • 2019
  • Natural compounds isolated from medicinal herbs and plants have immense significance in maintaining bone health. Hydrolysable tannins have been shown to possess a variety of medicinal properties including antiviral, anticancer, and anti-osteoclastogenic activities. As a part of a study on the discovery of alternative agent against skeletal diseases, we isolated a hydrolysable tannin, 2-O-digalloyl-1,3,4,6-tetra-O-galloyl-${\beta}$-D-glucose (DTOGG), from Galla Rhois and examined the effect on osteoclast formation and function. We found that DTOGG significantly inhibited receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation by downregulating the expression of the key regulator in osteoclastogenesis as well as osteoclast-related genes. Analysis of RANKL/RANK signaling revealed that DTOGG impaired activation of $I{\kappa}B{\alpha}$ and p65 in the nuclear factor kappa-lightchain-enhancer of activated B cells (NF-${\kappa}B$) signaling pathway. Furthermore, DTOGG reduced bone resorbing activity of osteoclasts, compared to the vehicle-treated control. These results suggest that DTOGG could be a useful natural compound to manage osteoclast-mediated skeletal diseases.

Osteoclast Activity and Osteoporosis

  • Kim, Hong-Hee
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.04a
    • /
    • pp.103-112
    • /
    • 2001
  • Bone homeostasis is maintained by a balance between activities of osteoblasts(bone forming cells) and osteoclasts (bone resorbing cells). The activities of these cells are closely regulated by multiple factors including hormones and cytokines. The cessation of estrogen at menopause disrupts the balanced regulation and is the main cause of osteoporosis in postmenopausal women. Recent molecular biological studies led to a discovery of tumor necrosis factor(TNF) and TNF receptor families genes that play critical roles in the regulation of osteoclast formation and function. RANKL (receptor activator of nuclear factor kappa B ligand; also called ODF, TRANCE, and OPGL) expressed on cells supporting osteoclast is essential for osteoclast differentiation, activation, and survival. RANK, the counter-receptor for RANKL, is expressed on progenitor and mature osteoclasts. The interaction between RANKL and RANK is requlated by a soluble decoy receptor OPG (osteoprotegerin). Gene knock out studies of these molecules showed profound effects on bone. These results prompted development of new strategies for treatment of bone diseases. Inhibition of osteoclast activity by blocking the RANKL-RANK interaction using OPG is being attempted. Research on the signaling pathways of RANK is also actively carried out. Screening natural products that inhibit the RANKL-RANK interaction or the activity of obteoclasts would be another effective means to a new drug target for bone resorbing diseases.

  • PDF

The Negative Role of PDE4 on PTH-induced Signaling in Osteoblasts (조골세포내 PDE4에 의한 PTH 신호의 음성적 조절)

  • Park, Hyo-Jung;Noh, A-Long-Sae-Mi;Lee, Jung-Min;Yim, Mi-Jung
    • YAKHAK HOEJI
    • /
    • v.54 no.5
    • /
    • pp.410-415
    • /
    • 2010
  • We explored the role of phosphodiesterase 4 (PDE4) on parathyroid (PTH)-induced signaling in osteoblasts. PTH was shown to increase the activity of PDE, mainly PDE4, in osteoblasts, which is partly attributable to elevated PDE4B and PDE4D mRNA expression. The use of PDE4 inhibitor strengthened the PTH-induced extracellular signal-regulated kinase (ERK) and p38 MAP kinase (MAPK) activation. Furthermore, the PDE4 inhibitor stimulated PTH-induced receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) expression in osteoblasts, which in turn increased osteoclast formation. Taken together, these data suggest the negative role of PDE4 on PTH-induced signaling in osteoblasts.

Aster saponin A2 inhibits osteoclastogenesis through mitogen-activated protein kinase-c-Fos-NFATc1 signaling pathway

  • Su, Xiang-Dong;Yang, Seo Y;Shrestha, Saroj K;Soh, Yunjo
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.47.1-47.11
    • /
    • 2022
  • Background: In lipopolysaccharide-induced RAW264.7 cells, Aster tataricus (AT) inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells and MAPKs pathways and critical pathways of osteoclast development and bone resorption. Objectives: This study examined how aster saponin A2 (AS-A2) isolated from AT affects the processes and function of osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264.7 cells and bone marrow macrophages (BMMs). Methods: The cell viability, tartrate-resistant acid phosphatase staining, pit formation assay, polymerase chain reaction, and western blot were carried out to determine the effects of AS-A2 on osteoclastogenesis. Results: In RAW264.7 and BMMs, AS-A2 decreased RANKL-initiated osteoclast differentiation in a concentration-dependent manner. In AS-A2-treated cells, the phosphorylation of ERK1/2, JNK, and p38 protein expression were reduced considerably compared to the control cells. In RAW264.7 cells, AS-A2 suppressed the RANKL-induced activation of osteoclast-related genes. During osteoclast differentiation, AS-A2 suppressed the transcriptional and translational expression of NFATc1 and c-Fos. AS-A2 inhibited osteoclast development, reducing the size of the bone resorption pit area. Conclusion: AS-A2 isolated from AT appears to be a viable therapeutic therapy for osteolytic illnesses, such as osteoporosis, Paget's disease, and osteogenesis imperfecta.

Afatinib ameliorates osteoclast differentiation and function through downregulation of RANK signaling pathways

  • Ihn, Hye Jung;Kim, Ju Ang;Bae, Yong Chul;Shin, Hong-In;Baek, Moon-Chang;Park, Eui Kyun
    • BMB Reports
    • /
    • v.50 no.3
    • /
    • pp.150-155
    • /
    • 2017
  • Non-small-cell lung cancer (NSCLC) is the third most common cancer that spreads to the bone, resulting in osteolytic lesions caused by hyperactivation of osteoclasts. Activating mutations in epidermal growth factor receptor-tyrosine kinase (EGF-TK) are frequently associated with NSCLC, and afatinib is a first-line therapeutic drug, irreversibly targeting EGF-TK. However, the effects of afatinib on osteoclast differentiation and activation as well as the underlying mechanism remain unclear. In this study, afatinib significantly suppressed receptor activator of nuclear factor ${\kappa}B$ (RANK) ligand (RANKL)-induced osteoclast formation in bone marrow macrophages (BMMs). Consistently, afatinib inhibited the expression of osteoclast marker genes, whereas, it upregulated the expression of negative modulator genes. The bone resorbing activity of osteoclasts was also abrogated by afatinib. In addition, afatinib significantly inhibited RANKL-mediated Akt/protein kinase B and c-Jun N-terminal kinase phosphorylation. These results suggest that afatinib substantially suppresses osteoclastogenesis by downregulating RANK signaling pathways, and thus may reduce osteolysis after bone metastasis.

Piperlongumine suppressed osteoclastogenesis in RAW264.7 macrophages

  • Jin, Sun-Mi;Kang, Hae-Mi;Park, Dan-Bi;Yu, Su-Bin;Kim, In-Ryoung;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.44 no.3
    • /
    • pp.89-95
    • /
    • 2019
  • Piperlongumine (PL) is a natural product found in long pepper (Piper longum). The pharmacological effects of PL are well known, and it has been used for pain, hepatoprotection, and asthma in Oriental medicine. No studies have examined the effects of PL on bone tissue or bone-related diseases, including osteoporosis. The current study investigated for the first time the inhibitory effects of PL on osteoclast differentiation, bone resorption, and osteoclastogenesis-related factors in RAW264.7 macrophages stimulated by the receptor activator for nuclear factor-${\kappa}B$ ligand (RANKL). Cytotoxicity was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and osteoclast differentiation and bone resorption were confirmed by tartrate-resistant acid phosphatase (TRAP) staining and pit formation analysis. Osteoclast differentiation factors were confirmed by western blotting. PL exhibited toxicity in RAW264.7 macrophages, inhibiting osteoclast formation and bone resorption, in addition to inhibiting the expression of osteoclastogenesis-related factors, such as tumor necrosis factor receptor-associated factor 6 (TRAF6), c-Fos, and NFATc1, in RANKL-stimulated RAW264.7 macrophages. These findings suggest that PL is suitable for the treatment of osteoporosis, and it serves as a potential therapeutic agent for various bone diseases.

Lipopolysaccharide (LPS)-Induced Autophagy Is Responsible for Enhanced Osteoclastogenesis

  • Sul, Ok-Joo;Park, Hyun-Jung;Son, Ho-Jung;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.880-887
    • /
    • 2017
  • We hypothesized that inflammation affects number and activity of osteoclasts (OCs) via enhancing autophagy. Lipopolysaccharide (LPS) induced autophagy, osteoclastogenesis, and cytoplasmic reactive oxygen species (ROS) in bone marrow-derived macrophages that were pre-stimulated with receptor activator of nuclear $factor-{\kappa}B$ ligand. An autophagy inhibitor, 3-methyladenine (3-MA) decreased LPS-induced OC formation and bone resorption, indicating that autophagy is responsible for increasing number and activity of OCs upon LPS stimulus. Knockdown of autophagy-related protein 7 attenuated the effect of LPS on OC-specific genes, supporting a role of LPS as an autophagy inducer in OC. Removal of ROS decreased LPS-induced OC formation as well as autophagy. However, 3-MA did not affect LPS-induced ROS levels, suggesting that ROS act upstream of phosphatidylinositol-4,5-bisphosphate 3-kinase in LPS-induced autophagy. Our results suggest the possible use of autophagy inhibitors targeting OCs to reduce inflammatory bone loss.

Medical Treatment of Breast Cancer Bone Metastasis: From Bisphosphonates to Targeted Drugs

  • Erdogan, Bulent;Cicin, Irfan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1503-1510
    • /
    • 2014
  • Breast cancer bone metastasis causing severe morbidity is commonly encountered in daily clinical practice. It causes pain, pathologic fractures, spinal cord and other nerve compression syndromes and life threatening hypercalcemia. Breast cancer metastasizes to bone through complicated steps in which numerous molecules play roles. Metastatic cells disrupt normal bone turnover and create a vicious cycle to which treatment efforts should be directed. Bisphosphonates have been used safely for more than two decades. As a group they delay time to first skeletal related event and reduce pain, but do not prevent development of bone metastasis in patients with no bone metastasis, and also do not prolong survival. The receptor activator for nuclear factor ${\kappa}B$ ligand inhibitor denosumab delays time to first skeletal related event and reduces the skeletal morbidity rate. Radionuclides are another treatment option for bone pain. New targeted therapies and radionuclides are still under investigation. In this review we will focus on mechanisms of bone metastasis and its medical treatment in breast cancer patients.

Hydroxychavicol Inhibits In Vitro Osteoclastogenesis via the Suppression of NF-κB Signaling Pathway

  • Sirada Srihirun;Satarat Mathithiphark;Chareerut Phruksaniyom;Pitchanun Kongphanich;Wisutthaporn Inthanop;Thanaporn Sriwantana;Salunya Tancharoen;Nathawut Sibmooh;Pornpun Vivithanaporn
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.205-213
    • /
    • 2024
  • Hydroxychavicol, a primary active phenolic compound of betel leaves, previously inhibited bone loss in vivo by stimulating osteogenesis. However, the effect of hydroxychavicol on bone remodeling induced by osteoclasts is unknown. In this study, the anti-osteoclastogenic effects of hydroxychavicol and its mechanism were investigated in receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclasts. Hydroxychavicol reduced the number of tartrate resistance acid phosphatase (TRAP)-positive multinucleated, F-actin ring formation and bone-resorbing activity of osteoclasts differentiated from RAW264.7 cells in a concentration-dependent manner. Furthermore, hydroxychavicol decreased the expression of osteoclast-specific genes, including cathepsin K, MMP-9, and dendritic cell-specific transmembrane protein (DC-STAMP). For mechanistic studies, hydroxychavicol suppressed RANKL-induced expression of major transcription factors, including the nuclear factor of activated T-cells 1 (NFATc1), c-Fos, and c-Jun. At the early stage of osteoclast differentiation, hydroxychavicol blocked the phosphorylation of NF-κB subunits (p65 and Iκβα). This blockade led to the decrease of nuclear translocation of p65 induced by RANKL. In addition, the anti-osteoclastogenic effect of hydroxychavicol was confirmed by the inhibition of TRAP-positive multinucleated differentiation from human peripheral mononuclear cells (PBMCs). In conclusion, hydroxychavicol inhibits osteoclastogenesis by abrogating RANKL-induced NFATc1 expression by suppressing the NF-κB signaling pathway in vitro.

Actin-binding LIM protein 1 regulates receptor activator of NF-κB ligand-mediated osteoclast differentiation and motility

  • Jin, Su Hyun;Kim, Hyunsoo;Gu, Dong Ryun;Park, Keun Ha;Lee, Young Rae;Choi, Yongwon;Lee, Seoung Hoon
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.356-361
    • /
    • 2018
  • Actin-binding LIM protein 1 (ABLIM1), a member of the LIM-domain protein family, mediates interactions between actin filaments and cytoplasmic targets. However, the role of ABLIM1 in osteoclast and bone metabolism has not been reported. In the present study, we investigated the role of ABLIM1 in the receptor activator of $NF-{\kappa}B$ ligand (RANKL)-mediated osteoclastogenesis. ABLIM1 expression was induced by RANKL treatment and knockdown of ABLIM1 by retrovirus infection containing Ablim1-specific short hairpin RNA (shAblim1) decreased mature osteoclast formation and bone resorption activity in a RANKL-dose dependent manner. Coincident with the downregulated expression of osteoclast differentiation marker genes, the expression levels of c-Fos and the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), critical transcription factors of osteoclastogenesis, were also decreased in shAblim1-infected osteoclasts during RANKL-mediated osteoclast differentiation. In addition, the motility of preosteoclast was reduced by ABLIM1 knockdown via modulation of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/Rac1 signaling pathway, suggesting another regulatory mechanism of ABLIM1 in osteoclast formation. These data demonstrated that ABLIM1 is a positive regulator of RANKL-mediated osteoclast formation via the modulation of the differentiation and PI3K/Akt/Rac1-dependent motility.