• Title/Summary/Keyword: Receiver efficiency

Search Result 436, Processing Time 0.022 seconds

Electromagnetic wave Shielding Materials for the Wireless Power Transfer Module in Mobile Handset (휴대단말기 무선전력 전송모듈용 전자기파 차폐소재)

  • Bae, Seok;Choi, Don-Chul;Hyun, Soon-Young;Lee, Sang Won
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.68-76
    • /
    • 2013
  • Currently, wireless power transmission technology based on magnetic induction was employed in battery charger for smart phone application. The system consists of wireless power transmitter in base station and receiver in smart phone. Size and thickness of receiver was strictly limited in the newest smart phone. In order to achieve high efficiency of a tiny small wireless power receiver module, sub-millimeter thick electromagnetic wave shielding sheet having high permeability and Q was essential component. It was found that magnetic field from transmitter to receiver can be intensified by sufficient shielding cause to minimize leakage magnetic flux by those magnetic properties. This leads to high efficiency of wireless power transmission and protects crucial integrated circuit of main board from electromagnetic noise. The important soft magnetic materials were introduced and summarized for the current small-power wireless power charger and NFC application and mid-power home appliance and high-power automotive application in the near future.

Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

  • Lee, Yu-Kyeong;Hwang, Jun-Won;Choi, Hyo-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.46-49
    • /
    • 2016
  • The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.

A Study on the Manufacture of the Continuum Receiver System for Observing Cosmic Radio Waves (우주전파 관측용 연속파 수신시스템 제작에 관한 연구)

  • 서정빈;이창훈;임인성;한석태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.67-75
    • /
    • 1994
  • In this paper, we manufactured the continuum receiver system for observing the continuum waves emitted from the continuum sources with using the 14m radio-telescope. The receiving system measures the total power of the continuum sources and consists of DC-amplifier, beam-chopper system. Phase-Locked Loop(PLL) circuit, blanking circuit and its period selection circuit, V/F converter, and counter part which are capable of interfacing with the computer which is used for a data acquisition and making the radio-telescope track the source. We compared the obsevation results which use the existing DVM method with the observation results which use the continuum receiver to measure the total power of the sources. Moreover, by method of beam switching observation which uses newly installed beam chopper system. We can significantly improve the observational efficiency more than the existing position switching observation method.

  • PDF

Analysis of GPS Software Receiver (GPS Software 수신기의 분석)

  • Zhang, Wei;Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.229-236
    • /
    • 2018
  • In this paper, we see the acquisition and tracking of L1 C/A signal on GPS receiver, do the research on GPS signal capture principle's foundation, and do the simulation of the GPS signals capture process for it's realizing and analyzing by Matlab. The simulation result, we can confirm this method's accuracy and the feasibility, and see that a satellite receiving ability play an important role in the efficiency of receiver.

On Implementing the Digital DTMF Receiver Using PARCOR Analysis Method (PARCOR 분석 방법에 의한 디지털 DTMF 수신기 구현에 관한 연구)

  • Ha, Pan Bong;ANN, Souguil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.2
    • /
    • pp.196-200
    • /
    • 1987
  • The following methods are proposed for implementing digital dual tone multi-frequency (DTMF) receiver: using infinite impulse response(IIR) digital filters, period-counting algorithm, discrete Fourier transform(DFT), and fast Fourier transform(FFT)[2]. The PARCOR(Partical Correlation) analysis method which has been widly used in the speech signal processing area is applied to the dual tone multi-frequency(DTMF) signal detection. This method is easy to implement digitally and stronger to digit simulation of speech than any other methods proposed up to date. Since sampling rate of 4KHz is used in the DTMF receiver for the detection of input DTMF signal originally sampled at 8KHz, it effects two times higher multiplexing efficiency.

  • PDF

Development of Heliostat Aiming Point Allocation Scheme in Heliostat Field Control Algorithm for 200kW Tower Type Solar Thermal Power Plant (200kW 탑형 태양열발전시스템을 위한 헬리오스타트 필드 운영 알고리즘의 헬리오스타트 반사목표점 할당 방안 개발)

  • Park, Young Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.21-29
    • /
    • 2014
  • Heliostat field control algorithm is the logics to operate the heliostat field of tower type solar thermal power plant and it could include various methodologies of how to control the heliostat field so as to optimize the energy collection efficiency as well as to reduce the system operating cost. This work, as the first part of the consecutive works, presents heliostat aiming mint allocation scheme which will be used in the heliostat field control algorithm for 200kW solar thermal power plant built in Daegu, Korea. We first discuss the structure of heliostat field control system required for the implementation of aiming scheme developed in this work. Then the methodologies to allocate the heliostat aiming points on the receiver are discussed. The simulated results show that the heliostat aiming point allocation scheme proposed in this work reduces the magnitude of peak heat flux on the receiver more than 40% from the case of which all the heliostats in the field aim at the center of receiver simultaneously. Also it shows that, when the proposed scheme is used, the degradation of heliostat field optical efficiency is relatively small from the maximal optical efficiency the heliostat field could have.

Implementation of Wireless Power Transmission System for Multiple Receivers Considering Load Impedance Variation (부하 임피던스 변화를 고려한 복수 수신기 무선전력전송 구현)

  • Kim, Young Hyun;Park, Dae Kil;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.148-153
    • /
    • 2018
  • This paper proposes a single-input multiple-output (SIMO) self-resonant wireless power transmission system for transmitting power to multiple receivers and the characteristics are simulated and measured. A 600 mm diameter transmission single loop, a 600 mm diameter helical transmission resonant coil, an external diameter 900 mm planar spiral reception resonant coil, and an $80{\times}60mm^2$ flat plate square coil as a receiver are used to form a wireless power transmission system 600 mm away with the table structure. For optimal characteristics, the wireless power transmission coils are designed by EM simulation and equivalent circuit analysis, and the characteristics are simulated and measured. The variation of the efficiency with distance from the center of the spiral resonant coil is analyzed and the measured efficiency is 57% for one receiver and for the two receivers, the efficiency is 37% for each receiver.

RGF: Receiver-based Greedy Forwarding for Energy Efficiency in Lossy Wireless Sensor Networks

  • Hur, In;Kim, Moon-Seong;Seo, Jae-Wan;Choo, Hyun-Seung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.529-546
    • /
    • 2010
  • Greedy forwarding is the key mechanism of geographic routing and is one of the protocols used most commonly in wireless sensor networks. Greedy forwarding uses 1-hop local information to forward packets to the destination and does not have to maintain the routing table, and thus it takes small overhead and has excellent scalability. However, the signal intensity reduces exponentially with the distance in realistic wireless sensor network, and greedy forwarding consumes a lot of energy, since it forwards the packets to the neighbor node closest to the destination. Previous proposed greedy forwarding protocols are the sender-based greedy forwarding that a sender selects a neighbor node to forward packets as the forwarding node and hence they cannot guarantee energy efficient forwarding in unpredictable wireless environment. In this paper, we propose the receiver-based greedy forwarding called RGF where one of the neighbor nodes that received the packet forwards it by itself. In RGF, sender selects several energy efficient nodes as candidate forwarding nodes and decides forwarding priority of them in order to prevent unnecessary transmissions. The simulation results show that RGF improves delivery rate up to maximum 66.8% and energy efficiency, 60.9% compared with existing sender-based greedy forwarding.

Omnidirectional Resonator in Three-Dimensional using a Globular Structure for Wireless Power Transfer (공 모양의 구조를 이용한 무선 전력 전송용 3차원 전 방향 공진기)

  • Kim, Donggeon;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.22-26
    • /
    • 2016
  • In this paper, using the globular structure designed and implemented for the transmitter and the receiver resonant wireless power transfer(WPT). The coil of the transmitter was proposed to emit a magnetic energy in three-dimensional space by winding a ball shape. Each side of the transmitter has been designed to obtain a high Q value by a spiral structure. This solves the problem that the transfer efficiency decreases rapidly depending on the location in the conventional WPT. The resonance frequency is used 6.78 MHz and the distance between the trasnitter and the receiver is 200 mm. The transfer efficiency of the proposed WPT system is higher than 40% at all direction.

Method to Optimize Maximum Efficiency in MIMO WPT (MIMO WPT 시스템의 최대 효율을 위한 최적화 방법)

  • Lee, Hyeongwook;Boo, Seunghyun;Na, Sehun;Lee, Bomson
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.286-289
    • /
    • 2019
  • In this paper, we proposed a method to control input powers and receiver loads for maximum efficiency in multiple-input multiple-output(MIMO) wireless power transfer(WPT) systems. The input voltage ratio between transmitters and receiver loads for maximum transfer efficiency is derived in terms of figure of merits. The theoretically derived input voltages for the transmitters and optimum loads for the receivers were found to be similar to those obtained by a genetic algorithm. We demonstrate the effectiveness of the theory using a few design examples. Using the results obtained from this study, effective and simplified designs of MIMO WPT systems will be possible.