DOI QR코드

DOI QR Code

부하 임피던스 변화를 고려한 복수 수신기 무선전력전송 구현

Implementation of Wireless Power Transmission System for Multiple Receivers Considering Load Impedance Variation

  • Kim, Young Hyun (Department of Electronics Engineering, Incheon National University) ;
  • Park, Dae Kil (Department of Electronics Engineering, Incheon National University) ;
  • Koo, Kyung Heon (Department of Electronics Engineering, Incheon National University)
  • 투고 : 2018.02.19
  • 심사 : 2018.04.16
  • 발행 : 2018.04.30

초록

본 논문에서는 복수 수신기에 전력을 전송하기 위한 SIMO (single-input multiple-output) 자기공진방식 무선전력전송 시스템을 제안하고, 이에 따른 시뮬레이션 및 측정결과를 제시하였다. 지름 600 mm 의 송신 단일루프 및 송신 헬리컬 공진 코일, 외경 900 mm 스파이럴 수신 공진 코일을 사용하고, $80{\times}60mm^2$ 평판 사각 코일을 수신으로 활용하여 600mm 떨어진 테이블 형태 구조로 무선전력전송 시스템을 구성하였다. 최적의 특성을 위해 무선전력전송 코일을 설계하고 3차원 전자계해석 및 등가회로 해석 시뮬레이션을 진행하고 이를 제작하여 전송 특성을 측정하였다. 스파이럴 공진코일의 중심부에서 거리에 따른 효율변화를 해석하였으며, 구성한 시스템의 측정결과 수신기가 1개일 경우의 효율은 57 % 이며, 2개로 수신될 경우 각각 37 %의 전송 효율을 나타내었다.

This paper proposes a single-input multiple-output (SIMO) self-resonant wireless power transmission system for transmitting power to multiple receivers and the characteristics are simulated and measured. A 600 mm diameter transmission single loop, a 600 mm diameter helical transmission resonant coil, an external diameter 900 mm planar spiral reception resonant coil, and an $80{\times}60mm^2$ flat plate square coil as a receiver are used to form a wireless power transmission system 600 mm away with the table structure. For optimal characteristics, the wireless power transmission coils are designed by EM simulation and equivalent circuit analysis, and the characteristics are simulated and measured. The variation of the efficiency with distance from the center of the spiral resonant coil is analyzed and the measured efficiency is 57% for one receiver and for the two receivers, the efficiency is 37% for each receiver.

키워드

참고문헌

  1. A. Kurs, A. Karalis, R. Moffatt, J. D. Joanopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly magnetic resonances," Science, Vol. 317, pp. 83-86, 2007. https://doi.org/10.1126/science.1143254
  2. S. M. Kim, J. I. Moon, I. K. Cho, J. H. Yoon, and W. J. Byun, “The technical trend and future direction of wireless power transmission,” Electronics and Telecommunications Trends, Vol. 29, No. 3, pp. 98-106, June 2014.
  3. D. U. Ryu, Y. H. Kim, and K. H. Koo, “Performance measurement of the wireless charging devices using electromagnetic induction techniques,” The Journal of Advanced Navigation Technology, Vol. 19, No. 3, pp. 237-243, June 2015. https://doi.org/10.12673/jant.2015.19.3.237
  4. M. Fu, H. Yin and C. Ma, "Megahertz multiple-receiver wireless power transfer systems with power flow management and maximum efficiency point tracking," in IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, pp. 4285-4293, Nov. 2017. https://doi.org/10.1109/TMTT.2017.2689747
  5. A. P. Sample, D. A. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 58, No. 2, pp 544-554, Feb. 2011. https://doi.org/10.1109/TIE.2010.2046002
  6. P. Vizmuller, RF Design Guide: systems,circuits, and equations. Norwood, MA: Artech House, 1995.
  7. J. H. Park, H. Y. Yang, and C. S. Kim, "Review for the helical coil type and spiral coil type in a mid range wireless power transfer system," in Proceeding of the KIEE Summer Conference 2011, PyeongChang: Korea, pp. 11-12, July. 2011.
  8. H. A. Wheeler, “Simple inductance formulas for radio coils,” Proceedings of the Institute of Radio Engineers, Vol. 16, No. 10, pp. 1398-1400, Oct. 1928.
  9. H. M. Greenhouse, "Design of planar rectangular microelectronic inductors," IEEE Transactions on Parts, Hybrids, and Packaging, Vol. 10, No. 2, pp.101-109, Jun 1974. https://doi.org/10.1109/TPHP.1974.1134841