• Title/Summary/Keyword: Receiver Operation

Search Result 360, Processing Time 0.026 seconds

An Efficient Authentication Scheme for Multicast Packet using Recovery Layer (복구 계층을 이용한 멀티캐스트 패킷 인증)

  • 홍기훈;정수환
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.3
    • /
    • pp.63-73
    • /
    • 2004
  • This paper proposes an efficient authentication scheme for multicast packet using recovery layer to provide source authentication. The problems of the existing schemes are as follows : TESLA requires time synchronization between the sender and the receiver, md hash-based schemes have high communication overheads due to additional hash values and require many buffers and delay for verification on receivers. Our main focus is reducing the buffer size, communication and computation burden of the receiver. The proposed scheme in this paper is highly robust to packet loss using the recovery layer based on XOR operation. It also provides low communication overhead, low verification cost, non-repudiation of the origin, immediate verification and robustness against DoS attack on the receiver.

Joint Virtual User Identification and Channel Security En/Decoding Method for Ad hoc Network

  • Zhang, Kenan;Li, Xingqian;Ding, Kai;Li, Li
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.241-247
    • /
    • 2022
  • Ad hoc network is self-organized network powered by battery. The reliability of virtual user identification and channel security are reduced when SNR is low due to limited user energy. In order to solve this problem, a joint virtual user identification and channel security en/decoding method is proposed in this paper. Transmitter-receiver-based virtual user identification code is generated by executing XOR operation between orthogonal address code of transmitter and pseudo random address code of receiver and encrypted by channel security code to acquire orthogonal random security sequence so as to improve channel security. In order to spread spectrum as well as improve transmission efficiency, data packet is divided into 6-bit symbols, each symbol is mapped with an orthogonal random security sequence. Subspace-based method is adopted by receiver to process received signal firstly, and then a judgment model is established to identify virtual users according to the previous processing results. Simulation results indicate that the proposed method obtains 1.6dB Eb/N0 gains compared with reference methods when miss alarm rate reaches 10-3.

Novel Laser Ultrasonic Receiver for Industrial NDE

  • Pouet, B.;Breugnot, S.;Clemenceau, P.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.380-389
    • /
    • 2006
  • A new laser-based ultrasonic receiver that is based on multi-channel interferometry is shown to be well suited for robust and sensitive detection of ultrasound in industrial environment. The proposed architecture combines random-quadrature detection with detector arrays and parallel multi-speckle processing. The high sensitivity is reached, thanks to the random phase distribution of laser speckle caused by surface roughness. High-density parallel signal processing is achieved by using a simple demodulation technique based on signal rectification. This simple detection scheme is also demonstrated for rejection of the laser intensity noise, making possible the use of lower cost laser without reduction in performances. Results demonstrating this new principle of operation and its performances are presented.

On the Selection of Burst Preamble Length for the Symbol Timing Estimate in the AWGN Channel

  • Lee, Seung-Hwan;Kim, Nam-il;Kim, Eung-Bae
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2059-2062
    • /
    • 2002
  • For detection of digitally modulated signals, the receiver must be provide with accurate carrier phase and symbol timing estimates. So far, tots of algorithms have been suggested for those purposes. In general, a interpolation filter with TED(Timing Error Detection) like Gardner algorithm is popularly used for symbol timing estimate of digital communication receiver. Apart from the performance point of view, a multiplicative operation of any interpolation filter limits the symbol rate of the system. Hence, we suggest a new symbol timing estimate algorithm for high speed burst-mode fixed wireless communication system and analyze its performance in the AWGN channel.

  • PDF

Software Design Methodology of OFDM DVB-T Receiver using DSP-based Platform (DSP 기반 플랫폼을 이용한 OFDM DVB-T 반송파 복원부의 소프트웨어 설계 방법)

  • 신정헌;유형석;윤주현;박찬섭;정해주;조준동
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.55-59
    • /
    • 2003
  • In this paper, we estimate the performance requirements of general-purpose DSP for Carrier Recovery of OFDM DVB-T receiver. Firstly, we transported the designed fixed-point OFDM DVB-T model to a floating-point software model written in C. Then, we measured the number of instruction cycles required for operation of Carrier Recovery in time. We use SignalMaster$\^$TM/ DSP platform of LYRtech Inc. as a environment of estimation, and Simulink$\^$TM/ as a graphical interface, Code Composer StudioTM of TI as profiler and compiler, and SPW$\^$TM/ for presenting functional reliability and comparing the performance distortion with fixed-point model. As a result, we show the required number of DSPs in our DSP-based system, and introduce the need of Multi-DSP-based system.

  • PDF

Incremental Antenna Selection Based on Lattice-Reduction for Spatial Multiplexing MIMO Systems

  • Kim, Sangchoon
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • Antenna selection is a method to enhance the performance of spatial multiplexing multiple-input multiple-output (MIMO) systems, which can achieve the diversity order of the full MIMO systems. Although various selection criteria have been studied in the literature, they should be adjusted to the detection operation implemented at the receiver. In this paper, antenna selection methods that optimize the post-processing signal-to-noise ratio (SNR) and eigenvalue are considered for the lattice reduction (LR)-based receiver. To develop a complexity-efficient antenna selection algorithm, the incremental selection strategy is adopted. Moreover, for improvement of performance, an additional iterative selection method is presented in combination with an incremental strategy.

A Maritime DGPS Reference Station Configuration Proposal for Operation Improvement

  • Choi, Yong Kwon;Son, Seok Bo;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.187-193
    • /
    • 2015
  • A maritime Differential Global Positioning System (DGPS) reference station broadcasts correction information to users having a DGPS receiver so that the navigation performance can be improved. A maritime DGPS reference station consists of a reference station (RS) that generates and broadcasts correction information, an integrity monitor (IM) that monitors the integrity of correction information, and a control station (CS) that controls them. A maritime DGPS reference station is continuously operated for 24 hours, and thus improvement in the ease of operation is a major element that can improve the performance of the system. In this study, a configuration of a maritime DGPS reference station that can improve the ease of operation and a relevant protocol were proposed, and an example of the implementation of the proposed system was presented.

A Precise Relative Positioning Method Based on Time-Differenced Carrier Phase Measurements from Low-Cost GNSS Receiver (저비용 GNSS 수신기를 이용한 반송파 위상 시각간 차분 측정치 기반의 정밀 상대위치 결정 기법)

  • Park, Kwi-Woo;Lee, DongSun;Park, Chansik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1846-1855
    • /
    • 2015
  • In this paper, a precise relative positioning with TD(time differenced) carrier phase measurements from a low-cost GNSS(Global Navigation Satellite System) receiver is proposed and analysed. The proposed method is using carrier phase measurement from a single GNSS receiver that reference receiver is not required and stand alone positioning is possible. TD operation removes the troublesome integer ambiguity resolution problem, and if the time interval is short, other error, such as, ionospheric, tropospheric delay and ephemeris error are effectively eliminated. The error analysis of the proposed method shows that a precise and positioning with carrier phase is possible. The implemented system is evaluated using a real car experiments. The results show that the horizontal positioning error was less than 3m during 10 minutes experiments, which is 4 times more precise than the results of normal code based absolute positioning.

An Integrated Si BiCMOS RF Transceiver for 900 MHz GSM Digital Handset Application (I) : RF Receiver Section (900MHz GSM 디지털 단말기용 Si BiCMOS RF송수신 IC개발 (I) : RF수신단)

  • Park, In-Shig;Lee, Kyu-Bok;Kim, Jong-Kyu;Kim, Han-Sik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.9-18
    • /
    • 1998
  • A single RF transceiver chip for an extended GSM handset application was designedm, fabricated and evaluated. A RFIC was fabricated by using silicon BiCMOS process, and then packaged in 80 pin TQFP of $10 {\times} 10 mm^{2}$ in size. As a result, it was achieved guite reasonable integraty and good RF performance at the operation voltage of 3.3V. This paper describes development results of RF receiver section of the RFIC, which includes LNA, down conversion mixer, AGC, switched capacitor filter and down sampling mixer. The test results show that RF receiver section is well operated within frequency range of 925 ~960 MHz, which is defined on the extended GSM specification (E-GSM). The receiver section also reveals moderate power consumption of 67 mA and minimum detectable signal of -105 dBm.

  • PDF

Performance Analysis of LEO Satellite GPS Receiver (저궤도 관측위성 GPS 수신기 궤도상 성능 분석)

  • Kwon, Ki-Ho;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.629-635
    • /
    • 2012
  • This paper presents a performance analysis of the GPS(Global Positioning System) receiver on board in LEO satellites, based on the comparison of its in-orbit performances and corresponding ground test results. An extensive ground tests on the subject GPS receiver has been performed in diverse conditions under the right frame of ground test environments and the analysis of in-orbit performances has also been performed with the huge amount of accumulated GPS data which has been in operation for 6 years since its launch on 2006. For this analysis, we chose three sets of in-orbit data; the data during the early mission period, the data at the 3-year mission completion time, and the most recent in-orbit data. As the performance measures, we selected the position and time synchronization accuracy, and the comparative analysis shows the concurrency between the in-orbit performances and the ground test results with in these performance measures, verifying the validity of the ground test. It is expected that the test configuration and analysis method presented in this paper can be applied to developing and verifying the future Koreanized satellite GPS receivers.