• Title/Summary/Keyword: Receiver Module

Search Result 325, Processing Time 0.023 seconds

Wideband Receiver Module for LADAR Using Large Area InGaAs Avalanche Photodiode (대면적 APD를 이용한 LADAR용 광대역 광수신기)

  • Park, Chan-Yong;Kim, Dug-Bong;Kim, Chung-Hwan;Kwon, Yongjoon;Kang, EungCheol;Lee, Changjae;Choi, Soon-Gyu;La, Jongpil;Ko, Jin Sin
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • In this paper, we report design, fabrication and characterization of the WBRM (Wide Band Receiver Module) for LADAR (LAser Detection And Ranging) application. The WBRM has been designed and fabricated using self-made APD (Avalanche Photodiode) and TIA (Trans-impedance Amplifier). The APD and TIA chips have been integrated on 12-pin TO8 header using self-made ceramic submount and circuit. The WBRM module showed 450 ps of rise time, and corresponding 780 MHz bandwidth. Furthermore, it showed very low output noise less than 0.8 mV, and higher SNR than 15 for 150 nW of MDS(Minimum Detectable Signal). To the author's knowledge, this is the best performance of an optical receiver module for LIDAR fabricated by 200 um InGaAs APD.

A Study on the DGPS Service Utilization for the Low-cost GPS Receiver Module Based on the Correction Projection Algorithm (위성배치정보와 보정정보 맵핑 알고리즘을 이용한 저가형 GPS 수신기의 DGPS 서비스 적용 방안 연구)

  • Park, Byung-Woon;Yoon, Dong-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.38 no.2
    • /
    • pp.121-126
    • /
    • 2014
  • This paper suggests a new algorithm to provide low-cost GPS modules with DGPS service, which corrects the error vector in the already-calculated position by projecting range corrections to position domain using the observation matrix calculated from the satellite elevation and azimuth angle in the NMEA GPGSV data. The algorithm reduced the horizontal and vertical RMS error of U-blox LEA-5H module from 1.8m/5.8m to 1.0m/1.4m during the daytime. The algorithm has advantage in improving the performance of low-cost module to that of DGPS receiver by a software update without any correction in hardware, therefore it is expected to contribute to the vitalization of the future high-precision position service infrastructure by reducing the costumer cost and vender risk.

Indoor positioning system for naval ship personnel using beacon

  • Kim, Jong-Hwa;Kim, Joo-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.135-142
    • /
    • 2019
  • In this paper, we propose a system that can identify the position of naval ship personnel at a glance by utilizing the Bluetooth-based beacons. The system proposed in this paper, installs a beacon receiver which are short-range wireless communication devices for each cabin, and in the installed beacon receiver receives information from beacons held by personnel. The received information is transmitted to the processing server, and the processing server transmits the integrated information of the cabin to the display module. Display module displays personnel information located in each cabin. As a result of simulations using the designed system, it was confirmed that the integrated information is transferred to the display module and displayed. Unlike existing situations where personnel positions are reported orally within the ship, the system can quickly and in real time determine the position of personnel, allowing for the management of personnel in non-combat situations and the rapid battle disposition in combat situations. This is expected to contribute greatly to the improvement of fighting power.

Develop physical layer analysis algorithm for OFDMA signal based IEEE 802.16e (IEEE 802.16e 기반 OFDMA 물리층 분석 알고리즘 연구)

  • Jang, Min-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.342-349
    • /
    • 2019
  • We describe and anlayzes the methodology and implementation results of H / W configuration and signal characteristics analysis algorithm for analyzing equipment for analyzing OFDMA physical layer based on 802.16e. Recently, demand for signal analysis of instruments that analyze these signals with the development of digital communication signals is rapidly increasing. Accordingly, it is necessary to develop signal analysis equipment capable of analyzing characteristics of a broadband communication signal using a wideband digital signal processing module. In this paper, we have studied the basic theory of OFDMA in order to devise a device capable of analyzing characterisitcs of broadband communication signals. Second, the structure of OFDMA transmitter/receiver was examined. Third, a wideband digitizer was implemented. we design Wimax signal analysis algorithm based on OFDMA among broadband communication methods and propose Wimax physical layer analysis S/W implementation through I, Q signals. The IF downconverter used the receiver module and the LO generation module of the spectrum analyzer. Quantitative analysis result is obtained through the algorithm of Wimax signal analysis by I, Q data.

Characteristics of High Speed Optical Transmitter Module Fabricated by Using Laser welding Technique (레이저웰딩기술을 이용한 고속 광통신용 송신모듈 제작 및 특성 연구)

  • Kang, Seung-Goo;Song, Min-Kyu;Jang, Dong-Hoon;Pyun, Kwang-Eui
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.552-554
    • /
    • 1995
  • In long-haul high speed optical communications, the distance between a transmitter and a receiver depends on the amount of light coupled to a single mode optical fiber from the laser diode(LD) as well as the LD characteristic itself. And the transmitter module must have long lifetime. high reliability, and even simple structure. Such points have induced laser welding technique to be a first choice in opto-electronic module packaging because it can provide strong weld joint in a short time with very small coupling loss. In this paper, packaging considerations and characteristics for high speed LD modules are discussed. They include optical path design factors for larger aligning tolerance, and novel laser welding processes for component assembly. For low coupling loss after laser welding processes, the optical path for optimum coupling of a single mode optical fiber into the LD chip was designed with the GRIN lens system providing sufficiently large aligning tolerance both in the radial and axial directions. The measured sensitivity of the LD module was better than -33.7dBm(back to back) at a BER of $10^{-10}$ with a 2.5Gbps NRZ $2^{23}-1$ PRBS.

  • PDF

Design Considerations of K-band Front-End Module for Dynamic Range (Dynamic Range를 고려한 K-band Front-End Module 설계)

  • Han, Geon-Hee;Jang, Youn-Gil;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 2012
  • In this paper, we designed and analysed K-band front-end module for digital microwave communication system receiver which improvement of dynamic range. We also suggested method of minimum amplified input signal level used to minimize noise figure of low-noise amplifier for High dynamic range. The designed modules consist of active mixer with conversions gain and PL-DRO with high stability and quality factor. The designed modules performance is that has the characteristics of over 54dB conversion gain, 1.3dB noise figure.

Evaluating of the Effectiveness of RTK Surveying Performance Based on Low-cost Multi-Channel GNSS Positioning Modules (다채널 저가 GNSS 측위 모듈기반 RTK 측량의 효용성 평가)

  • Kim, Chi-Hun;Oh, Seong-Jong;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.53-65
    • /
    • 2022
  • According to the advancement of the GNSS satellite positioning system, the module of hardware and operation software reflecting accuracy and economical efficiency is implemented in the user sector including the multi-channel GNSS receiver, the multi-frequency external antenna and the mobile app (App) base public positioning analysis software etc., and the multichannel GNSS RTK positioning of the active configuration method (DIY, Do it yourself) is possible according to the purpose of user. Especially, as the infrastructure of multi-GNSS satellite is expanded and the potential of expansion of utilization according to various modules is highlighted, interest in the utilization of multi-channel low-cost GNSS receiver module is gradually increasing. The purpose of this study is to review the multi-channel low-cost GNSS receivers that are appearing in the mass market in various forms and to analyze the utilization plan of the "address information facility investigation project" of the Ministry of Public Administration and Security by constructing the multi-channel low-cost GNSS positioning module based RTK survey system (hereinafter referred to as "multi-channel GNSS RTK module positioning system"). For this purpose, we constructed a low-cost "multi-channel GNSS RTK module positioning system" by combining related modules such as U-blox's F9P chipset, antenna, Ntrip transmission of GNSS observation data and RTK positioning analysis app through smartphone. Kinematic positioning was performed for circular trajectories, and static positioning was performed for address information facilities. The results of comparative analysis with the Static positioning performance of the geodetic receivers were obtained with 5 fixed points in the experimental site, and the good static surveying performance was obtained with the standard deviation of average ±1.2cm. In addition, the results of the test point for the outline of the circular structure in the orthogonal image composed of the drone image analysis and the Kinematic positioning trajectory of the low cost RTK GNSS receiver showed that the trajectory was very close to the standard deviation of average ±2.5cm. Especially, as a result of applying it to address information facilities, it was possible to verify the utility of spatial information construction at low cost compared to expensive commercial geodetic receivers, so it is expected that various utilization of "multi-channel GNSS RTK module positioning system"

A Study on the Implementation and Performance Analysis of FPGA Based Galileo E1 and E5 Signal Processing (FPGA 기반의 갈릴레오 E1 및 E5 신호 처리 구현 및 성능에 관한 연구)

  • Sin, Cheon-Sig;Lee, Sang-Uk;Yoon, Dong-Weon;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.1
    • /
    • pp.36-44
    • /
    • 2009
  • The key technologies of GNSS receiver for GNSS sensor station are under development as a part of a GNSS ground station in ETRI. This paper presents the GNSS receiver implementation and signal processing result which is implemented based on FPGA to process the Galileo E1 and E5 signal. To verify the working and performance for GNSS receiver which is implemented based on FPGA, live signal received from GIOVE-B which is second test satellite is used. We gather GIOVE-B signal by using prototyping antenna and RF/IF units including IF-component. To verify Galileo E1 and E5 signal processing function from GIOVE-B, FPGA based signal processing module is implemented as a prototyping hardware board.

  • PDF

Mobile Receiver Model for T-DMB Location Automatic Emergency Alert Service (T-DMB 국지적 자동재난경보방송 서비스를 위한 모바일 수신 모델)

  • Kwon, Seong-Geun;Jeon, Hee-Young;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.796-806
    • /
    • 2009
  • This paper presents the method of emergency warning system operation based on T-DMB and the design of T-DMB AEAS receiver model. The proposed receiver model compares the geographical location of emergency with the location of DMB transmitting station from T-DMB broadcasting signal and classifies the receiver location into alert region, neighboring region and non-alert region and transmits the emergency alert message according to each region. The geographical location of emergency can be obtained from FIG 5/2 EWS data field for AEAS message and the location of DMB transmitting station can be estimated from either the latitude and the longitude in main identifier and sub identifier in FIG 0/22 data filed for TII(Transmitter Identification Information) or TII distribution database. In our experiment, we implemented the proposed receiver model with display section, storage section, DMB module for receiving broadcasting signal and control section and performed test emergency alert broadcasting using T-DMB signal generator.

Design and Implementation of SDR-based Multi-Constellation Multi-Frequency Real-Time A-GNSS Receiver Utilizing GPGPU

  • Yoo, Won Jae;Kim, Lawoo;Lee, Yu Dam;Lee, Taek Geun;Lee, Hyung Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.315-333
    • /
    • 2021
  • Due to the Global Navigation Satellite System (GNSS) modernization, recently launched GNSS satellites transmit signals at various frequency bands such as L1, L2 and L5. Considering the Korean Positioning System (KPS) signal and other GNSS augmentation signals in the future, there is a high probability of applying more complex communication techniques to the new GNSS signals. For the reason, GNSS receivers based on flexible Software Defined Radio (SDR) concept needs to be developed to evaluate various experimental communication techniques by accessing each signal processing module in detail. This paper proposes a novel SDR-based A-GNSS receiver capable of processing multi-GNSS/RNSS signals at multi-frequency bands. Due to the modular structure, the proposed receiver has high flexibility and expandability. For real-time implementation, A-GNSS server software is designed to provide immediate delivery of satellite ephemeris data on demand. Due to the sampling bandwidth limitation of RF front-ends, multiple SDRs are considered to process the multi-GNSS/RNSS multi-frequency signals simultaneously. To avoid the overflow problem of sampled RF data, an efficient memory buffer management strategy was considered. To collect and process the multi-GNSS/RNSS multi-frequency signals in real-time, the proposed SDR A-GNSS receiver utilizes multiple threads implemented on a CPU and multiple NVIDIA CUDA GPGPUs for parallel processing. To evaluate the performance of the proposed SDR A-GNSS receiver, several experiments were performed with field collected data. By the experiments, it was shown that A-GNSS requirements can be satisfied sufficiently utilizing only milliseconds samples. The continuous signal tracking performance was also confirmed with the hundreds of milliseconds data for multi-GNSS/RNSS multi-frequency signals and with the ten-seconds data for multi-GNSS/RNSS single-frequency signals.