• 제목/요약/키워드: RecQ

Search Result 15, Processing Time 0.025 seconds

Backbone assignment of the intrinsically disordered N-terminal region of Bloom syndrome protein

  • Min June Yang;Chin-Ju Park
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.3
    • /
    • pp.17-22
    • /
    • 2023
  • Bloom syndrome protein (BLM) is a pivotal RecQ helicase necessary for genetic stability through DNA repair processes. Our investigation focuses on the N-terminal region of BLM, which has been considered as an intrinsically disordered region (IDR). This IDR plays a critical role in DNA metabolism by interacting with other proteins. In this study, we performed triple resonance experiments of BLM220-300 and presented the backbone chemical shifts. The secondary structure prediction based on chemical shifts of the backbone atoms shows the region is disordered. Our data could help further interaction studies between BLM220-300 and its binding partners using NMR.

Transcription Profiles of Human Cells in Response to Sodium Arsenite Exposure

  • Lee, Te-Chang;Konan Peck;Yih, Ling-Huei
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.59-69
    • /
    • 2001
  • Arsenic exposure is associated with several human diseases, including cancers, atherosclerosis, hypertension, and cerebrovascular diseases. In cultured cells, arsenite, an inorganic arsenic com-pound, was demonstrated to interfere with many physiological functions, such as enhancement of oxidative stress, delay of cell cycle progression, and induction of structural and numerical changes of chromosomes. The objective of this study is to investigate the effects of arsenic exposure on gene expression profiles by colorimetric cDNA microarray technique. HFW (normal human diploid skin fibroblasts), CL3 (human lung adenocarcinoma cell line), and HaCaT (immortalized human keratinocyte cell line) were treated with 5 $\mu\textrm{M}$ or 10 $\mu\textrm{M}$ sodium arsenite for 6 or 16 h, respectively. By a dual-color detection system, the expression profile of arsenite-treated cultures was compared to that of control cultures. Several genes expressed differentially were identified on the microarray membranes. For example, MDM2, SWI/SNF, ubiquitin specific protease 4, MAP3K11, RecQ protein-like 5, and Ribosomal protein Ll0a were consistently induced in all three cell types by arsenite, whereas prohibitin, cyclin D1, nucleolar protein 1, PCNA, Nm23, and immediate early protein (ETR101) were apparently inhibited. The present results suggest that arsenite insults altered the expression of several genes participating in cellular responses to DNA damage, stress, transcription, and cell cycle arrest.

  • PDF

Deficiency of Bloom's Syndrome Protein Causes Hypersensitivity of C. elegans to Ionizing Radiation but Not to UV Radiation, and Induces p53-dependent Physiological Apoptosis

  • Kim, Yun Mi;Yang, Insil;Lee, Jiyeung;Koo, Hyeon-Sook
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.228-234
    • /
    • 2005
  • Caenorhabditis elegans him-6 mutants, which show a high incidence of males and partial embryonic lethality, are defective in the orthologue of human Bloom's syndrome protein (BLM). When strain him-6(e1104) containing a missense him-6 mutation was irradiated with ${\gamma}$-rays during germ cell development or embryogenesis, embryonic lethality was higher than in the wild type, suggesting a critical function of the wild type gene in mitotic and pachytene stage germ cells as well as in early embryos. Even in the absence of ${\gamma}$-irradiation, apoptosis was elevated in the germ cells of the him-6 strain and this increase was dependent on a functional p53 homologue (CEP-1), suggesting that spontaneous DNA damage accumulates due to him-6 deficiency. However, induction of germline apoptosis by ionizing radiation was not significantly affected by the deficiency, indicating that HIM-6 has no role in the induction of apoptosis by exogenous DNA damage. We conclude that the C. elegans BLM orthologue is involved in DNA repair in promeiotic cells undergoing homologous recombination, as well as in actively dividing germline and somatic cells.

Isolation and Characterization of DNA Damaging Agent Sensitivity of rqh1 mutant from Schizosaccharomyce pombe (분열형 효모인 Schizosaccharomyces pombe 로부터 rqh1 돌연변이의 DNA damaging agent sensitivity를 보상하는 유전자의 특성 연구)

  • Lee, In-Hye;Choi, In-Soon
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.39-44
    • /
    • 2007
  • The Rqh1 gene is essential for vegetative growth in fission Yeast. The rqh1 mutant showed that sensitivity of DNA damaging agent, a wild range of phenotype including abnormal gene expression and cell elongation. This result showed that the rqhl-overexpression cell was sensitivity to DNA damaging agent like rqhl mutant. When Rqh1 have an over-expression by $nmt1^+$ promoter of pREP vector, rqh1 mutant DNA damaging agent sensitivity could be compensated. We isolated two strong mutant containing complementation gene, rqh156 and rqh172, respectively. This result observed that the DNA damaging agent sensitivity of rqhl mutant was complemented by the expression of rqh156 and rqh172. They induced mRNA expression in a dose-dependent manner HU, MMS and UV. The HU sensitivity of the rqhl was complemented by the expression of rqh156 and rqh172. The mRNA expression of rqh156 decreased on HU dose dependent but the mRNA expression of rqh172 did not decrease on HU dose dependent. The MMS and W sensitivity of the rqhl was complemented by the expression of rqh156 and rqh172. These results indicate that the isolated rqhl gene may play an important role in DNA metabolism.

The Site-Directed A184S Mutation in the HTH Domain of the Global Regulator IrrE Enhances Deinococcus radiodurans R1 Tolerance to UV Radiation and MMC Shock

  • Zhang, Chen;Zhou, Zhengfu;Zhang, Wei;Chen, Zhen;Song, Yuan;Lu, Wei;Lin, Min;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2125-2134
    • /
    • 2015
  • IrrE is a highly conserved global regulator in the Deinococcus genus and contributes to survival from high doses of UV radiation, ionizing radiation, and desiccation. Drad-IrrE and Dgob-IrrE from Deinococcus radiodurans and Deinococcus gobiensis I-0 each share 66% sequence identity. However, Dgob-IrrE showed a stronger protection phenotype against UV radiation than Drad-IrrE in the D. radiodurans irrE-deletion mutant (ΔirrE), which may be due to amino acid residues differences around the DNA-binding HTH domain. Site-directed mutagenesis was used to generate a Drad-IrrE A184S single mutant, which has been characterized and compared with the ΔirrE mutant complemented strain with Drad-irrE, designated ΔirrE-E. The effects of the A184S mutation following UV radiation and mitomycin C (MMC) shock were determined. The A184S mutant displayed significantly increased resistance to UV radiation and MMC shock. The corresponding A184 site in Dgob-IrrE was inversely mutated, generating the S131A mutant, which exhibited a loss of resistance against UV radiation, MMC shock, and desiccation. qPCR analysis revealed that critical genes in the DNA repair system, such as recA, pprA, uvrA, and ddrB, were remarkably induced after UV radiation and MMC shock in the ΔirrE-IE and A184S mutants. These data suggested that A184S improves the ability against UV radiation and MMC shock, providing new insights into the modification of IrrE. We speculated that the serine residue may determine the efficiency of DNA binding, leading to the increased expression of IrrE-dependent genes important for protection against DNA damage.