DOI QR코드

DOI QR Code

Backbone assignment of the intrinsically disordered N-terminal region of Bloom syndrome protein

  • Min June Yang (Department of Chemistry, Gwangju Institute of Science and Technology) ;
  • Chin-Ju Park (Department of Chemistry, Gwangju Institute of Science and Technology)
  • Received : 2023.09.04
  • Accepted : 2023.09.18
  • Published : 2023.09.20

Abstract

Bloom syndrome protein (BLM) is a pivotal RecQ helicase necessary for genetic stability through DNA repair processes. Our investigation focuses on the N-terminal region of BLM, which has been considered as an intrinsically disordered region (IDR). This IDR plays a critical role in DNA metabolism by interacting with other proteins. In this study, we performed triple resonance experiments of BLM220-300 and presented the backbone chemical shifts. The secondary structure prediction based on chemical shifts of the backbone atoms shows the region is disordered. Our data could help further interaction studies between BLM220-300 and its binding partners using NMR.

Keywords

Acknowledgement

We thank Korea Basic Science Institute (Ochang, Korea) for allowing us to use their NMR spectrometer. This work was supported by the National Research Foundation (NRF) of Korea [grant 2021R1A2C1004669], which is funded by the Korean government (MSIT); by the Korea Basic Science Institute under the R&D program [Project No. C230430] supervised by the Ministry of Science and ICT, Korea.

References

  1. L. Wu, S. L. Davies, N. C. Levitt, and I. D. Hickson. J. Biol. Chem. 276, 22 (2001) 
  2. J. K. Karow, R. K. Chakraverty, and I. D. Hickson. J. Biol. Chem. 272, 49 (1997) 
  3. N. A. Ellis, J. Groden, T.-Z. Ye, J. Straughen, D. J. Lennon, S. Ciocci, M. Proytcheva, and J. German. Cell 83, 4 (1995) 
  4. R. Lu, J. J. O'Rourke, A. P. Sobinoff, J. A. M. Allen, C. B. Nelson, C. G. Tomlinson, M. Lee, R. R. Reddel, A. J. Deans, and H. A. Pickett. Nat. Commun. 10, 1 (2019) 
  5. Y.-M. Kim and B.-S. Choi. Nucleic Acids Res. 38, 21 (2010) 
  6. J. A. Newman, P. Savitsky, C. K. Allerston, A. H. Bizard, O . O zer, K. Sarlos, Y. Liu, E. Pardon, J. Steyaert, I. D. Hickson; et al. Nucleic Acids Res. 43, 10 (2015) 
  7. D. Kang, S. Lee, K.-S. Ryu, H.-K. Cheong, E.-H. Kim, and C.-J. Park. FEBS Lett 592, 4 (2018) 
  8. V. M. Shastri, V. Subramanian, and K. H. Schmidt. Nucleic Acids Res. 49, 15 (2021) 
  9. L. Wan, J. Han, T. Liu, S. Dong, F. Xie, H. Chen, and J. Huang. Proc. Nat'l Acad. Sci. USA 110, 26 (2013) 
  10. J. Shi, W. F. Chen, B. Zhang, S. H. Fan, X. Ai, N. N. Liu, S. Rety, and X. G. Xi. J. Biol. Chem. 292, 14 (2017) 
  11. W. Lee and J. L. Markley. Bioinformatics 34, 9 (2018) 
  12. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax. J. Biomol. NMR 6, 3 (1995) 
  13. W. Lee, M. Tonelli, and J. L. Markley. Bioinformatics 31, 8 (2015) 
  14. W. Lee, A. Bahrami, H. T. Dashti, H. R. Eghbalnia, M. Tonelli, W. M. Westler, and J. L. Markley. J. Biomol. NMR 73, 5 (2019) 
  15. Y. Shen and A. Bax. J. Biomol. NMR 56, 3 (2013) 
  16. W. Adamski, N. Salvi, D. Maurin, J. Magnat, S. Milles, M. R. Jensen, A. Abyzov, C. J. Moreau, and M. Blackledge. J. Am. Chem. Soc. 141, 44 (2019)