Previous studies from domestic and abroad are accumulating information on how to reason students' continuous changes through teaching experiments. These studies deal with scenes in which students who make 'smooth reasoning' and 'chunky reasoning' construct mathematical results together in teaching experiments. However, in order to analyze their results in more detail, it is necessary to check what kind of results a student reasoning in a specific way constructs for the tasks of previous studies. According to the need for these studies, the researcher conducted a total of 14 teaching experiments on one first-year high school student who was found to make 'chunky reasoning'. In this study, it was possible to observe a scene in which a student who makes 'chunky reasoning' constructs an output similar to 'a mathematical result constructed by students with various reasoning methods(smooth reasnoning or chunky reasoning) in previous studies.' In particular, the student who participated in this study observed a consistent construction method of constructing the function of 'time-speed' from the function of 'time-distance'. The researcher expected that information on this student's distinctive construction methods would be helpful for subsequent studies.
Journal of The Korean Association For Science Education
/
v.29
no.2
/
pp.253-266
/
2009
This study was focused on analyzing students' informal reasoning patterns and their considerations in decision-making on socioscientific issues. This study involved 20 undergraduate students (10 biology majors and 10 non-biology majors) and showed how the two groups responded on socioscientific issues. Semi-structured interviews were conducted twice respectively based on six scenarios of gene therapy and human cloning. The result showed 93% of the total number of participants' decisions were made by rationalistic reasoning, whereas emotional reasoning was 49%, and intuitive reasoning was 27%. Students usually used two or three informal reasoning patterns together. Most of the students took more consideration on social factors. Some perceived ethical and moral implications of the issues, but they did not consider them seriously. They made their decisions depending on their own values, etc. 65% of the participants got their information on socioscientific issues from the mass media. Biology majors hardly used intuitive reasoning compared to non-biology majors. The Biology major group took into deep considerations on socioscientific issues while the non-biology major group seemed to interpret the given scenarios simply. This implied that the content knowledge was a significant factor of their decision-making. Therefore, it is necessary to develop proper science courses for non-major students to improve their decision-making on socioscientific issues. So, when we develop educational materials or programs, we should consider students' reasoning patterns, their considerations in decision-making, and their content knowledge. And because the mass media has the potential to play a key role for an effective education, we need to make a plan to make a practical application.
Though there is no agreement on the definition of analogical reasoning, there is no doubt that analogical reasoning is the means of mathematical knowledge construction. Mathematicians generally have a tendency or desire to find similarities between new and existing Ideas, and new and existing representations. They construct appropriate links to new ideas or new representations by focusing on common relational structures of mathematical situations rather than on superficial details. This focus is analogical reasoning at work in the construction of mathematical knowledge. Since analogical reasoning is the means by which mathematicians do mathematics and is close]y linked to measures of intelligence, it should be considered important in mathematics education. This study investigates how mathematicians used analogical reasoning, what role did it flay when they construct new concept or problem solving strategy.
The purpose of this study was to analyze children's proportional reasoning process on an ill-structured "architectural drawing" problem solving and to investigate their level and characteristics of proportional reasoning. As results, they showed various perspective and several level of proportional reasoning such as illogical, additive, multiplicative, and functional approach. Furthermore, they showed their expanded proportional reasoning from the early stage of perception of various types of quantities and their proportional relation in the problem to application stage of their expanded and generalized relation. Students should be encouraged to develop proportional reasoning by experiencing various quantity in ration and proportion situations.
The Transactions of the Korea Information Processing Society
/
v.5
no.1
/
pp.103-110
/
1998
In case of traditional Rule-Based Reasoning(RBR) and Case-Based Reasoning(CBR), although knowledge is reasoned either by one of them or by the integration of RBR and CBR, there is a problem that much time should be consumed by numerous rules and cases. In order to improve this time-consuming problem, in this paper, a new type of reasoning technique, which is a kind of integration of reduced RB and CB, is to be introduced. Such a new type of reasoning uses Rough Set, by which we can represent multi-meaning and/or random knowledge easily. In Rough Set, solution is to be obtained by its own complementary rules, using the process of RB and CB into equivalence class by the classification and approximation of Rough Set. and then using reduced RB and CB through the integrated reasoning.
There are many studies on 'how' students solve mathematical problems, but few of them sufficiently explained 'why' they have to solve the problems in their own different ways. As quantitative reasoning is the basis for algebraic reasoning, to scrutinize a student's way of dealing with quantities in a problem situation is critical for understanding why the student has to solve it in such a way. From our teaching experiments with two ninth-grade students, we found that emergences of a certain level of covariational reasoning were highly consistent across different types of problems within each participating student. They conceived the given problem situations at different levels of covariation and constructed their own quantity-structures. It led them to solve the problems with the resources accessible to their structures only, and never reconciled with the other's solving strategies even after having reflection and discussion on their solutions. It indicates that their own structure of quantities constrained the whole process of problem solving and they could not discard the structures. Based on the results, we argue that teachers, in order to provide practical supports for students' problem solving, need to focus on the students' way of covariational reasoning of problem situations.
Research shows that formative assessment has a more powerful effect on student learning than summative assessment. This case study of an 8th grade algebra classroom focuses on how the implementation of Formative Assessment Lessons (FALs) and the participation in teacher learning communities related to FALs changed in the teacher's instructional practices, over the course of a year, to promote students' mathematical reasoning and justification. Two classroom observations are analyzed to identify how the teacher elicited and built on students' mathematical reasoning, and how the teacher prompted students to respond to and develop one another's mathematical ideas. Findings show that the teacher solicited students' reasoning more often as the academic year progressed, and students also began developing mathematical reasoning in meaningful ways, such as articulating their mathematical thinking, responding to other students' reasoning, and building on those ideas leading by the teacher. However, findings also show that teacher change in teaching practices is complicated and intertwined with various dimensions of teacher development. This study contributes to the understanding of changes in teaching practices, which has significant implications for teacher professional development and frameworks for investigating teacher learning.
The certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions appearing in the rules are represented by real values between zero and one. If it can allow the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions can be represented by intervals, such as vague numbers between zero and one based on vague sets, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more flexible manner[18]. we are also proposed an efficient algorithm to perform vague set reasoning automatically. This vague set reasoning algorithm allows the rule-based systems to perform reasoning in a more flexible and more efficient.
Problem solving is important in school mathematics as the means and end of mathematics education. In elementary school, inductive reasoning is closely linked to problem solving. The purpose of this study was to examine ways of improving problem solving ability through analysis of inductive reasoning process. After the process of inductive reasoning in problem solving was analyzed, five different stages of inductive reasoning were selected. It's assumed that the flow of inductive reasoning would begin with stage 0 and then go on to the higher stages step by step, and diverse sorts of additional inductive reasoning flow were selected depending on what students would do in case of finding counter examples to a regulation found by them or to their inference. And then a case study was implemented after four elementary school students who were in their sixth grade were selected in order to check the appropriateness of the stages and flows of inductive reasoning selected in this study, and how to teach inductive reasoning and what to teach to improve problem solving ability in terms of questioning and advising, the creation of student-centered class culture and representation were discussed to map out lesson plans. The conclusion of the study and the implications of the conclusion were as follows: First, a change of teacher roles is required in problem-solving education. Teachers should provide students with a wide variety of problem-solving strategies, serve as facilitators of their thinking and give many chances for them ide splore the given problems on their own. And they should be careful entegieto take considerations on the level of each student's understanding, the changes of their thinking during problem-solving process and their response. Second, elementary schools also should provide more intensive education on justification, and one of the best teaching methods will be by taking generic examples. Third, a student-centered classroom should be created to further the class participation of students and encourage them to explore without any restrictions. Fourth, inductive reasoning should be viewed as a crucial means to boost mathematical creativity.
Proceedings of the Korean Operations and Management Science Society Conference
/
1998.10a
/
pp.224-227
/
1998
This paper proposes inter-level causal reasoning to implement synergistic approach. We decompose KOSPI prediction model into economy and industry level. Two kinds of intra-level QCOM are combined in inter-level QCOM via Inter-level relations. Downward reasoning is achieved by propagating the disturbance in the higher level to lower level while upward reasoning is to analyze the reverse cases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.