• Title/Summary/Keyword: Rear of Specimen

Search Result 22, Processing Time 0.023 seconds

A Study on Evaluation of Crack Opening Point in High Strength Aluminum Alloy(I) (고강도 알미늄 합금재에 있어서 크랙열림점 평가에 관한 연구(I))

  • 최병기
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.100-106
    • /
    • 1993
  • This paper aims to synthesize the research on fatigue fracture mechanisms of high strength aluminum alloys which are widely used in motorcars or airplanes to prevent accidents. To measure the data of crack opening ratio, the same materials and method are used for evaluating the fatigue crack propagation rate as an effective stress intensity factor. But, many researchers have brought different results. An exact crack opening ratio was, therefore, proposed for getting a more accurate fatigue crack propagation rate. The main conclusions obtained are as follows. (1) As a result of the fatigue test, the value of the crack opening ratio is the same regardless of the stress ratio. (2) The value of crack opening ratio is different according to the measuring point. After measuring the crack propagation rate by using an effective stress intensity factor, the crack opening ratio value measured at the crack mouth by a clip gage, or measured rear of the specimen by a strain gage is more accurate than that by any other measuring test.

  • PDF

Design Optimization of Automotive Rear Cross Member with Cold-rolled Ultra High Strength Steel (냉연 초고강도강 적용 차량용 리어 크로스 멤버 형상 설계 변수 최적화)

  • J. Y. Kim;S. H. Kim;D. H. Choi;S. Hong
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.103-111
    • /
    • 2024
  • With the increasing global interest in carbon neutrality, the automotive industry is also transitioning to the production of eco-friendly cars, specifically electric vehicles. In order to achieve comparable driving distances to internal combustion engine vehicles, the application of high-capacity battery packs has led to an increase in vehicle weight. To achieve light-weighting and durability requirements of automotive components simultaneously, there is a demand for research on the application of Ultra-High Strength Steel (UHSS). However, when manufacturing chassis components using UHSS, there are challenges related to fracture defects due to lower elongation compared to regular steel sheets, as well as spring-back issues caused by high tensile strength. In this study, a simulated specimen that is not affected by the property changes of four materials was designed to improve formability of the rear cross member, which is the most challenging automotive chassis component. The influence and correlation of material-specific variables were analyzed through finite element analysis (FEA) for each material with tensile strength of 440, 590, 780, and 980 MPa grades, resulting in the development of a predictive equation. To validate the equation, the simulated specimens of 980 MPa grade were produced from the test molds. Then the reliability of the FEA and predictive equation was verified with measured specimen data using a 3D scanner. The results of this study can be proposed to improve the formability of UHSS chassis components in future researches.

Effects of seed geometry on the crystal growth and the magnetic properties of single grain REBCO bulk superconductors

  • Lee, Hwi-Joo;Park, Soon-dong;Jun, Bung-Hyuck;Kim, Chan-Joong;Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.33-39
    • /
    • 2017
  • This study presents that the orientation and the geometry of seed affect on the growth behavior of melt processed single grain REBCO bulk superconductor and its magnetic properties. The effects of seed geometry have been investigated for thin $30mm{\times}30mm$ rectangular powder compacts. Single grain REBCO bulk superconductors have been grown successfully by a top seed melt growth method for 8-mm thick vertical thin REBCO slab. Asymmetric structures have been developed at the front surface and at the rear surface of the specimen. Higher magnetic properties have been obtained for the specimen that c-axis is normal to the specimen surface. The relationships between microstructure, grain growth and magnetic properties have been discussed.

Strain Properties on Rear Side of Fiber Reinforced Concrete and Cement Composite by Impact Load (충격하중을 받는 섬유보강 콘크리트 및 시멘트 복합체의 배면변형특성)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Lee, Bo-Kyeong;Yoon, Min-Ho;Son, Min-Jae;Kim, Gyeong-Tae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.158-159
    • /
    • 2017
  • In this study, it evaluate the strain properties of fiber reinforced concrete and fiber reinforced cement composite. The types of fiber are Hooked steel fiber and it was mixed 0.5, 1.0 vol.% in concrete and 1.0, 2.0 vol.% in cement composites. The impact test was conducted by using a projectile (diameter: 25mm, velocity: 170m/s) and strain properties on the rear side of each specimen was evaluated by strain gage. After the impact test, fracture grade, fracture depth was evaluated.

  • PDF

An Experimental Study on Energy Dissipation Capacity of protection according to the reinforcement panel (보강재에 따른 방호패널의 에너지 소산능력에 대한 실험적 연구)

  • Lee, Yae-Chan;Kim, Gyu-Yong;Seok, Won-Kyun;Choi, Byung-Cheol;Sasui, Sasui;Nam, Jeongsoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.113-114
    • /
    • 2022
  • The purpose of this study is to identify the rear energy transfer amount and time delay capability of the protection panel that has been impated by a projectile and the protection panel reinforced the foam polypropylene on the rear of the fiber reinforced cement itious composites, and compared and analyzed the load resistance capacity, energy dissipation capacity, and impact delay capacity when dynamic extreme load were applied to the specimen.

  • PDF

Impact Fracture Behavior of Ceramic Plates Using Instrumented Long Bar (계장화한 긴 바를 사용한 세라믹판의 충격 파괴 거동)

  • Sin, Hyeong-Seop;O, Sang-Yeop;Choe, Su-Yong;Seo, Chang-Min;Jang, Sun-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.787-793
    • /
    • 2002
  • In this study, a bar impact test of low velocity was carried out to gain an insight into the damage mechanism and sequence induced in alumina plates(AD 85 and AD 90) under impact conditions. An experimental setup utilizing an instrumented long bar impact was devised, that can measure directly the impact force applied to the specimen and supply a compressive contact pressure to the specimen. During the bar impact testing, the influences of the contact pressure applied along the impact direction to the specimen on the fracture behavior were investigated. The measured impact force profiles explained well the damage behavior induced in alumina plates. The higher contact pressure to the specimen led to the less damage due to the suppression of radial cracks due to the increase in the apparent flexural stiffness of plate. It had produced the change of damage pattern developed in the specimen; from the radial cracks to the local contact stress dominant damage. It would contribute to the improvement of the ballistic property in ceramic plates. The observed results showed the following sequence in damage developed: The development of cone crack at impact region, the formation of radial cracks from the rear surface of plate depending on the plate thickness, the occurrence of crushing within the cone envelope and the fragmentation.

A Study on the Penetration Resistance and Spalling Properties of High Strength Concrete by Impact of High Velocity Projectile (고속비상체의 충돌에 의한 고강도 콘크리트의 표면관입저항성 및 배면박리성상에 관한 연구)

  • Kim, Hong-Seop;Nam, Jeong-Soo;Hwang, Heon-Kyu;Jeon, Joong-Kyu;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • Concrete materials subjected to impact by high velocity projectiles exhibit responses that differ from those when they are under static loading. Projectiles generate localized effects characterized by penetration of front, spalling of rear and perforation as well as more widespread crack propagation. The magnitude of damage depends on a variety of factors such as material properties of the projectile, impact velocity, the mass and geometry as well as the material properties of concrete specimen size and thickness, reinforcement materials type and method of the concrete target. In this study, penetration depth of front, spalling thickness of rear and effect of spalling suppression of concrete by fiber reinforcement was evaluated according to compressive strength of concrete. As a result, it was similar to results of the modified NDRC formula and US ACE formula that the more compressive strength is increased, the penetration depth of front is suppressed. On the other hand, the increase in compressive strength of concrete does not affect spalling of rear suppression. Spalling of rear is controlled by the increase of flexural, tensile strength and deformation capacity.

A Study on the Effect of a Gap in Measurement of Underwater Transmission Loss by Pulse Tube (펄스 튜브를 이용한 수중 전달 손실 측정에서 간극이 미치는 영향에 대한 고찰)

  • Seo, Yun-Ho;Kim, Sang-Ryul;Kim, Jae-Seung;Byun, Yang-Heon;Seo, Youngsoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.192-199
    • /
    • 2015
  • There is a gap between the inner wall of a pulse tube and an underwater acoustic material when the measurement for transmission loss by the pulse tube is carried out. In this paper, the effect, which is caused by the gap, for the measurement of transmission loss is analyzed. Transmission coefficient is derived from the ratio of the pressures between front and rear of the gap. Then, transmission loss for specimen with a gap is obtained by combining the transmission coefficients of the gap and specimen. The results of experiment and simulation for a specimen of stainless steel with 10 mm thickness are compared in order to evaluate the simulation model. Finally, simulations with respect to the gap size and transmission loss of a specimen are performed to analyze and evaluate the effect of the gap in measurement of transmission loss.

A Study on Evaluation of Crack Opening Point in Al 2024-T3 Material (Al 2024-T3재의 Crack Opening Point의 평가에 관한 연구)

  • Choi, Byung-Ki;Jang, Kyeung-Cheun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.16-20
    • /
    • 2004
  • This paper aims to analyze fatigue fracture mechnisms with high strength aluminum alloys, which are widely used in vehicles or airplanes to prevent accidents. Usefulness of the crack opening point was proposed by using an effective stress intensity facor when evaluating the fatigue crack propagaion rate. Therefore an exact crack opening ratio can be measured for a more exact fatigue crack propagation rate. It is found that the fatigue crack propagation rate was valid within the range of experimentation as an effective stress intensity factor. Summarizing the results are as follows in this paper ; (1) It is found that the value of the crack opening ratio is constant at the rear of the specimen, U'=0.25 at the crack mouth and U'=0.45 at the crack tip, respectively regardless of the stress ratio. (2) The crack opening ratio is different according to measurement locations. The crack opening ratio value was measured at the crack mouth by a clip gage or measured behind the specimen by a strain gage. It is found that the crack opening ratio value is more accurate that any other measuring test for evaluating the crack propagation ratio test by effective stress intensity factor.

A Study on the Damage Design of Military Aircraft Structure Material by Armor Piercing Bullet Hit (철갑탄 피격에 의한 군용 항공기 구조재료의 손상설계에 관한 연구)

  • Hur, Jang-Wook;Hyun, Young-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1051-1057
    • /
    • 2010
  • Database for the damage reference by armor piercing bullet test was established for both tube and plate specimens having a range of thickness. As the inclined angles of hit are increasing, it has been found that penetration damage diameter tends to increases accordingly in both specimen of the tube and plate, and such penetration damage diameter on the rear side becomes bigger than those on the front side. The tube specimen showed that the damage becomes bigger when central areas rather than the peripheral were hit. Through the plate test, it also has been found that the penetration ballistic limit for Al alloy is about 25.4mm and that of stainless steel about 12.7mm. From the fatigue analysis results using the database for damage reference, it has been identified whether the safety requirements of military aircraft could be met.