• Title/Summary/Keyword: Real-valued data

Search Result 62, Processing Time 0.026 seconds

Forecasting evaluation via parametric bootstrap for threshold-INARCH models

  • Kim, Deok Ryun;Hwang, Sun Young
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.2
    • /
    • pp.177-187
    • /
    • 2020
  • This article is concerned with the issue of forecasting and evaluation of threshold-asymmetric volatility models for time series of count data. In particular, threshold integer-valued models with conditional Poisson and conditional negative binomial distributions are highlighted. Based on the parametric bootstrap method, some evaluation measures are discussed in terms of one-step ahead forecasting. A parametric bootstrap procedure is explained from which directional measure, magnitude measure and expected cost of misclassification are discussed to evaluate competing models. The cholera data in Bangladesh from 1988 to 2016 is analyzed as a real application.

Multi-variate Fuzzy Polynomial Regression using Shape Preserving Operations

  • Hong, Dug-Hun;Do, Hae-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.131-141
    • /
    • 2003
  • In this paper, we prove that multi-variate fuzzy polynomials are universal approximators for multi-variate fuzzy functions which are the extension principle of continuous real-valued function under $T_W-based$ fuzzy arithmetic operations for a distance measure that Buckley et al.(1999) used. We also consider a class of fuzzy polynomial regression model. A mixed non-linear programming approach is used to derive the satisfying solution.

  • PDF

Fast Median Filtering Algorithms for Real-Valued 2-dimensional Data (실수형 2차원 데이터를 위한 고속 미디언 필터링 알고리즘)

  • Cho, Tai-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2715-2720
    • /
    • 2014
  • Median filtering is very effective to remove impulse type noises, so it has been widely used in many signal processing applications. However, due to the time complexity of its non-linearity, median filtering is often used using a small filter window size. A lot of work has been done on devising fast median filtering algorithms, but most of them can be efficiently applied to input data with finite integer values like images. Little work has been carried out on fast 2-d median filtering algorithms that can deal with real-valued 2-d data. In this paper, a fast and simple median 2-d filter is presented, and its performance is compared with the Matlab's 2-d median filter and a heap-based 2-d median filter. The proposed algorithm is shown to be much faster than the Matlab's 2-d median filter and consistently faster than the heap-based algorithm that is much more complicated than the proposed one. Also, a more efficient median filtering scheme for 2-d real valued data with a finite range of values is presented that uses higher-bit integer 2-d median filtering with negligible quantization errors.

Equalizationof nonlinear digital satellite communicatio channels using a complex radial basis function network (Complex radial basis function network을 이용한 비선형 디지털 위성 통신 채널의 등화)

  • 신요안;윤병문;임영선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.9
    • /
    • pp.2456-2469
    • /
    • 1996
  • A digital satellite communication channel has a nonlinearity with memory due to saturation characeristis of the high poer amplifier in the satellite and transmitter/receiver linear filter used in the overall system. In this paper, we propose a complex radial basis function network(CRBFN) based adaptive equalizer for compensation of nonlinearities in digital satellite communication channels. The proposed CRBFN untilizes a complex-valued hybrid learning algorithm of k-means clustering and LMS(least mean sequare) algorithm that is an extension of Moody Darken's algorithm for real-valued data. We evaluate performance of CRBFN in terms of symbol error rates and mean squared errors nder various noise conditions for 4-PSK(phase shift keying) digital modulation schemes and compare with those of comples pth order inverse adaptive Volterra filter. The computer simulation results show that the proposed CRBFN ehibits good equalization, low computational complexity and fast learning capabilities.

  • PDF

An Approach for Determining Propensities of Blog Networks (블로그 연결망의 성향 판정 방안)

  • Yoon, Seok-Ho;Park, Sun-Ju;Kim, Sang-Wook
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.178-188
    • /
    • 2009
  • A blog is a personal website where its owner publishes his/her articles for others. A blog can have relationships with other blogs. In this paper, we define a network that is composed of blogs connected together with such relationships as a blog network. Blog networks can have two different propensities characterized by the articles published in the blogs: information-valued propensity and friendship-valued propensity. The degree of each propensity of a blog network plays an important role in deciding business policies for blog networks. In this paper, we address the problem of determining the degrees of two propensities of a given blog network. First, we determine the degree of the propensity of every relationship, a basic unit of a blog network, by using classification that is one of data mining functionalities. Then, by utilizing the result thus obtained, we compute the degrees of two propensities of the whole blog network. Also, we propose a method to solve the problem that the degree of propensities depends on the size of blog networks. To verify the superiority of the proposed approach, we perform extensive experiments using a huge volume of real-world blog data. The results show that our approach provides high accuracy of around 93% in determining the degrees of both propensities of relationships between arbitrary two blogs. We also verify the applicability of the proposed approach by showing that if determines the degrees of the information-valued and friendship-valued propensities correctly in real-world blog networks.

SOLVING BI-OBJECTIVE TRANSPORTATION PROBLEM UNDER NEUTROSOPHIC ENVIRONMENT

  • S. SANDHIYA;ANURADHA DHANAPAL
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.831-854
    • /
    • 2024
  • The transportation problem (TP) is one of the earliest and the most significant implementations of linear programming problem (LPP). It is a specific type of LPP that mostly works with logistics and it is connected to day-to-day activities in our everyday lives. Nowadays decision makers (DM's) aim to reduce the transporting expenses and simultaneously aim to reduce the transporting time of the distribution system so the bi-objective transportation problem (BOTP) is established in the research. In real life, the transportation parameters are naturally uncertain due to insufficient data, poor judgement and circumstances in the environment, etc. In view of this, neutrosophic bi-objective transportation problem (NBOTP) is introduced in this paper. By introducing single-valued trapezoidal neutrosophic numbers (SVTrNNs) to the co-efficient of the objective function, supply and demand constraints, the problem is formulated. The DM's aim is to determine the optimal compromise solution for NBOTP. The extended weighted possibility mean for single-valued trapezoidal neutrosophic numbers based on [40] is proposed to transform the single-valued trapezoidal neutrosophic BOTP (SVTrNBOTP) into its deterministic BOTP. The transformed deterministic BOTP is then solved using the dripping method [10]. Numerical examples are provided to illustrate the applicability, effectiveness and usefulness of the solution approach. A sensitivity analysis (SA) determines the sensitivity ranges for the objective functions of deterministic BOTP. Finally, the obtained optimal compromise solution from the proposed approach provides a better result as compared to the existing approaches and conclusions are discussed for future research.

An Algorithm for Portfolio Selection Model

  • Kim, Yong-Chan;Shin, Ki-Young;Kim, Jong-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.65-68
    • /
    • 2000
  • The problem of selecting a portfolio is to find Un investment plan that achieves a desired return while minimizing the risk involved. One stream of algorithms are based upon mixed integer linear programming models and guarantee an integer optimal solution. But these algorithms require too much time to apply to real problems. Another stream of algorithms are fur a near optimal solution and are fast enough. But, these also have a weakness in that the solution generated can't be guaranteed to be integer values. Since it is not a trivial job to tansform the scullion into integer valued one simutaneously maintaining the quality of the solution, they are not easy to apply to real world portfolio selection. To tackle the problem more efficiently, we propose an algorithm which generates a very good integer solution in reasonable amount of time. The algorithm is tested using Korean stock market data to verify its accuracy and efficiency.

  • PDF

Double Binary Turbo Coded Data Transmission of STBC UWB Systems for U-Healthcare Applications

  • Kim, Yoon-Hyun;Kim, Eun-Cheol;Kim, Jin-Young
    • International journal of advanced smart convergence
    • /
    • v.1 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • In this paper, we analyze and simulate performance of space time block coded (STBC) binary pulse amplitude modulation-direct sequence (BPAM-DS) ultra-wideband (UWB) systems with double binary turbo code in indoor environments for various ubiquitous healthcare (u-healthcare) applications. Indoor wireless channel is modeled as a modified Saleh and Valenzuela (SV) model proposed as a UWB indoor channel model by the IEEE 802.15.SG3a in July 2003. In the STBC encoding process, an Alamouti algorithm for real-valued signals is employed because UWB signals have the type of real signal constellation. It is assumed that the transmitter has knowledge about channel state information. From simulation results, it is shown that the STBC scheme does not have an influence on improving bit error probability performance of the BPAM-DS UWB systems. It is also confirmed that the results of this paper can be applicable for u-healthcare applications.

An Enhancement of Learning Speed of the Error - Backpropagation Algorithm (오류 역전도 알고리즘의 학습속도 향상기법)

  • Shim, Bum-Sik;Jung, Eui-Yong;Yoon, Chung-Hwa;Kang, Kyung-Sik
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1759-1769
    • /
    • 1997
  • The Error BackPropagation (EBP) algorithm for multi-layered neural networks is widely used in various areas such as associative memory, speech recognition, pattern recognition and robotics, etc. Nevertheless, many researchers have continuously published papers about improvements over the original EBP algorithm. The main reason for this research activity is that EBP is exceeding slow when the number of neurons and the size of training set is large. In this study, we developed new learning speed acceleration methods using variable learning rate, variable momentum rate and variable slope for the sigmoid function. During the learning process, these parameters should be adjusted continuously according to the total error of network, and it has been shown that these methods significantly reduced learning time over the original EBP. In order to show the efficiency of the proposed methods, first we have used binary data which are made by random number generator and showed the vast improvements in terms of epoch. Also, we have applied our methods to the binary-valued Monk's data, 4, 5, 6, 7-bit parity checker and real-valued Iris data which are famous benchmark training sets for machine learning.

  • PDF

CONDITIONAL INTEGRAL TRANSFORMS OF FUNCTIONALS ON A FUNCTION SPACE OF TWO VARIABLES

  • Bong Jin, Kim
    • Korean Journal of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.593-601
    • /
    • 2022
  • Let C(Q) denote Yeh-Wiener space, the space of all real-valued continuous functions x(s, t) on Q ≡ [0, S] × [0, T] with x(s, 0) = x(0, t) = 0 for every (s, t) ∈ Q. For each partition τ = τm,n = {(si, tj)|i = 1, . . . , m, j = 1, . . . , n} of Q with 0 = s0 < s1 < . . . < sm = S and 0 = t0 < t1 < . . . < tn = T, define a random vector Xτ : C(Q) → ℝmn by Xτ (x) = (x(s1, t1), . . . , x(sm, tn)). In this paper we study the conditional integral transform and the conditional convolution product for a class of cylinder type functionals defined on K(Q) with a given conditioning function Xτ above, where K(Q)is the space of all complex valued continuous functions of two variables on Q which satify x(s, 0) = x(0, t) = 0 for every (s, t) ∈ Q. In particular we derive a useful equation which allows to calculate the conditional integral transform of the conditional convolution product without ever actually calculating convolution product or conditional convolution product.