• Title/Summary/Keyword: Real-time warping

Search Result 71, Processing Time 0.217 seconds

Image Cache Algorithm for Real-time Implementation of High-resolution Color Image Warping (고해상도 컬러 영상 워핑의 실시간 구현을 위한 영상 캐시 알고리즘)

  • Lee, You Jin;Ryoo, Jung Rae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.643-649
    • /
    • 2016
  • This paper presents a new image cache algorithm for real-time implementation of high-resolution color image warping. The cache memory is divided into four cache memory modules for simultaneous readout of four input image pixels in consideration of the color filter array (CFA) pattern of an image sensor and CFA image warping. In addition, a pipeline structure from the cache memory to an interpolator is shown to guarantee the generation of an output image pixel at each system clock cycle. The proposed image cache algorithm is applied to an FPGA-based real-time color image warping, and experimental results are presented to show the validity of the proposed method.

An Implementation of Real-time Image Warping Using FPGA (FPGA를 이용한 실시간 영상 워핑 구현)

  • Ryoo, Jung Rae;Lee, Eun Sang;Doh, Tae-Yong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.6
    • /
    • pp.335-344
    • /
    • 2014
  • As a kind of 2D spatial coordinate transform, image warping is a basic image processing technique utilized in various applications. Though image warping algorithm is composed of relatively simple operations such as memory accesses and computations of weighted average, real-time implementations on embedded vision systems suffer from limited computational power because the simple operations are iterated as many times as the number of pixels. This paper presents a real-time implementation of a look-up table(LUT)-based image warping using an FPGA. In order to ensure sufficient data transfer rate from memories storing mapping LUT and image data, appropriate memory devices are selected by analyzing memory access patterns in an LUT-based image warping using backward mapping. In addition, hardware structure of a parallel and pipelined architecture is proposed for fast computation of bilinear interpolation using fixed-point operations. Accuracy of the implemented hardware is verified using a synthesized test image, and an application to real-time lens distortion correction is exemplified.

Real-Time Simulation of Thin Rod

  • Choi, Min Gyu;Song, Oh-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.849-859
    • /
    • 2013
  • This paper proposes a real-time simulation technique for thin rods undergoing large rotational deformation. Rods are thin objects such as ropes and hairs that can be abstracted as one-dimensional structures. Development of a real-time physical model that can produce visually convincing animation of thin rods has been a challenging problem in computer graphics. We adopt continuum mechanics to formulate the governing equation, and develop a modal warping technique for rods to integrate the governing equation in real-time; This is a novel extension of the previous modal warping techniques developed for solids and shells. Experimental results show that the proposed method runs in real-time even for large meshes and it can simulate large bending and/or twisting deformations.

Physics-Based Real-Time Simulation of Thin Rods (가는 막대의 물리기반 실시간 시뮬레이션)

  • Choi, Min-Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.2
    • /
    • pp.1-7
    • /
    • 2010
  • This paper proposes a real-time simulation technique for thin rods undergoing large rotational deformation. Rods are thin objects such as ropes and hairs that can be abstracted as 1D structures. Development of a satisfactory physical model that runs in real-time but produces visually convincing animation of thin rods has been remaining a challenge in computer graphics. We adopt the energy formulation based on continuum mechanics, and develop a modal warping technique for rods that can integrate the governing equation in real-time. This novel simulation framework results from making extensions to the original modal warping technique, which was developed for the simulation of 3D solids. Experiments show that the proposed method runs in real-time even for large meshes, and that it can simulate large bending and/or twisting deformations with acceptable realism.

Post-Rendering 3D Warping using Projective Texture (투영 텍스춰를 이용한 렌더링 후 3차원 와핑)

  • Park, Hui-Won;Ihm, In-Seong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.8
    • /
    • pp.431-439
    • /
    • 2002
  • Due to the recent development of graphics hardware, real-time rendering of complex scenes is still a challenging task. As results of researches on image based rendering, the rendering schemes based on post-rendering 3D warping have been proposed. In general, these methods produce good rendering results. However, they are not appropriate for real-time rendering since it is not easy to accelerate the time-consuming algorithms within graphics subsystem. As an attempt to resolve this problem of the post-rendering 3D warping technique, we present a new real-time scheme based on projective texture. In our method, two reference images obtained by rendering complicated objects at two consecutive points of time are used. Rendering images of high quality for intermediate points of time are obtained by projecting the reference images onto a simplified object, and then blending the resulting images. Our technique will be effectively used in developing real-time graphics applications such as 3D games and virtual reality software and so on.

A Subsequence Matching Technique that Supports Time Warping Efficiently (타임 워핑을 지원하는 효율적인 서브시퀀스 매칭 기법)

  • Park, Sang-Hyun;Kim, Sang-Wook;Cho, June-Suh;Lee, Hoen-Gil
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.167-179
    • /
    • 2001
  • This paper discusses an index-based subsequence matching that supports time warping in large sequence databases. Time warping enables finding sequences with similar patterns even when they are of different lengths. In earlier work, we suggested an efficient method for whole matching under time warping. This method constructs a multidimensional index on a set of feature vectors, which are invariant to time warping, from data sequences. For filtering at feature space, it also applies a lower-bound function, which consistently underestimates the time warping distance as well as satisfies the triangular inequality. In this paper, we incorporate the prefix-querying approach based on sliding windows into the earlier approach. For indexing, we extract a feature vector from every subsequence inside a sliding window and construct a multi-dimensional index using a feature vector as indexing attributes. For query precessing, we perform a series of index searches using the feature vectors of qualifying query prefixes. Our approach provides effective and scalable subsequence matching even with a large volume of a database. We also prove that our approach does not incur false dismissal. To verily the superiority of our method, we perform extensive experiments. The results reseal that our method achieves significant speedup with real-world S&P 500 stock data and with very large synthetic data.

  • PDF

A Method for Time Warping Based Similarity Search in Sequence Databases (시퀀스 데이터베이스를 위한 타임 워핑 기반 유사 검색)

  • Kim, Sang-Wook;Park, Sang-Hyun
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.219-226
    • /
    • 2000
  • In this paper, we propose a new novel method for similarity search that supports time warping. Our primary goal is to innovate on search performance in large databases without false dismissal. To attain this goal, we devise a new distance function $D_{tw-lb}$ that consistently underestimates the time warping distance and also satisfies the triangular inequality. $D_{tw-lb}$ uses a 4-tuple feature vector extracted from each sequence and is invariant to time warping. For efficient processing, we employ a multidimensional index that uses the 4-tuple feature vector as indexing attributes and $D_{tw-lb}$ as a distance function. We prove that our method does not incur false dismissal. To verify the superiority of our method, we perform extensive experiments. The results reveal that our method achieves significant speedup up to 43 times with real-world S&P 500 stock data.

  • PDF

Image Cache for FPGA-based Real-time Image Warping (FPGA 기반 실시간 영상 워핑을 위한 영상 캐시)

  • Choi, Yong Joon;Ryoo, Jung Rae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.91-100
    • /
    • 2016
  • In FPGA-based real-time image warping systems, image caches are utilized for fast readout of image pixel data and reduction of memory access rate. However, a cache algorithm for a general computer system is not suitable for real-time performance because of time delays from cache misses and on-line computation complexity. In this paper, a simple image cache algorithm is presented for a FPGA-based real-time image warping system. Considering that pixel data access sequence is determined from the 2D coordinate transformation and repeated identically at every image frame, a cache load sequence is off-line programmed to guarantee no cache miss condition, and reduced on-line computation results in a simple cache controller. An overall system structure using a FPGA is presented, and experimental results are provided to show accuracy and validity of the proposed cache algorithm.

Efficient Tiled Stereo Display System for Tangible Meeting

  • Kim, Ig-Jae;Ahn, Sang-Chul;Kim, Hyoung-Gon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1239-1241
    • /
    • 2007
  • In this paper, we present a tiled display system for tangible meeting. We built our system as a distributed system and use GPU based warping and image blending technique for real-time processing. For efficiency, we update specific area only, where the remote user exist, in real-time and blended it with static panoramic image of remote site.

  • PDF

Performance Evaluation of Methods for Time-Series Subsequence Matching Under Time Warping (타임 워핑 하의 시계열 서브시퀀스 매칭 기법의 성능 평가)

  • 김만순;김상욱
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.290-297
    • /
    • 2003
  • A time-series database is a set of data sequences, each of which is a list of changing values corresponding to an object. Subsequence matching under time warping is defined as an operation that finds such subsequences whose time warping distance to a given query sequence are below a tolerance from a time-series database. In this paper, we first point out the characteristics of the previous methods for time-series sequence matching under time warping, and then discuss the approaches for applying them to whole matching as well as subsequence matching. Also, we perform quantitative performance evaluation via a series of experiments with real-life data. There have not been such researches in the literature that compare the performances of all the previous methods of subsequence matching under time warping. Thus, our results would be used as a good reference for showing their relative performances.

  • PDF