Performance Evaluation of Methods for Time-Series Subsequence Matching Under Time Warping

타임 워핑 하의 시계열 서브시퀀스 매칭 기법의 성능 평가

  • Published : 2003.11.01

Abstract

A time-series database is a set of data sequences, each of which is a list of changing values corresponding to an object. Subsequence matching under time warping is defined as an operation that finds such subsequences whose time warping distance to a given query sequence are below a tolerance from a time-series database. In this paper, we first point out the characteristics of the previous methods for time-series sequence matching under time warping, and then discuss the approaches for applying them to whole matching as well as subsequence matching. Also, we perform quantitative performance evaluation via a series of experiments with real-life data. There have not been such researches in the literature that compare the performances of all the previous methods of subsequence matching under time warping. Thus, our results would be used as a good reference for showing their relative performances.

시계열 데이터베이스란 객체의 변화되는 값들의 연속으로 구성된 데이터 시퀀스들의 집합이며, 타임 워핑 하의 서브시퀀스 매칭은 주어진 질의 시퀀스와 타임 워핑 거리가 허용치 이하인 서브시퀀스들을 시계열 데이터베이스로부터 찾아내는 연산이다. 본 논문에서는 먼저 타임 워핑 하의 시퀀스 매칭을 지원하는 기존의 기법들의 특성을 지적하고, 이들을 전체매칭 및 서브시퀀스 매칭에 각각 적용하는 방안에 관하여 논의한다. 또한, 실제 주식 데이터를 이용한 다양한 실험을 통하여 이들에 대한 정량적인 성능평가를 수행한다. 타임 워핑 하의 서브시퀀스 매칭을 위한 기존 기법들의 성능을 상호 비교한 연구 결과는 아직 제시된 바 없다. 따라서 본 연구 결과는 이러한 세 가지 기법들에 대한 성능을 제시하는 좋은 자료로서 사용될 수 있을 것이다.

Keywords