• Title/Summary/Keyword: Real-time sensor data

Search Result 1,234, Processing Time 0.031 seconds

A Camera Tracking System for Post Production of TV Contents (방송 콘텐츠의 후반 제작을 위한 카메라 추적 시스템)

  • Oh, Ju-Hyun;Nam, Seung-Jin;Jeon, Seong-Gyu;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.692-702
    • /
    • 2009
  • Real-time virtual studios which could run only on expensive workstations are now available for personal computers thanks to the recent development of graphics hardware. Nevertheless, graphics are rendered off-line in the post production stage in film or TV drama productions, because the graphics' quality is still restricted by the real-time hardware. Software-based camera tracking methods taking only the source video into account take much computation time, and often shows unstable results. To overcome this restriction, we propose a system that stores camera motion data from sensors at shooting time as common virtual studios and uses them in the post production stage, named as POVIS(post virtual imaging system). For seamless registration of graphics onto the camera video, precise zoom lens calibration must precede the post production. A practical method using only two planar patterns is used in this work. We present a method to reduce the camera sensor's error due to the mechanical mismatch, using the Kalman filter. POVIS was successfully used to track the camera in a documentary production and saved much of the processing time, while conventional methods failed due to lack of features to track.

Research of Non-integeral Spatial Interpolation for Precise Identifying Soybean Location under Plastic Mulching

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-seung;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.156-156
    • /
    • 2017
  • Most crop damages have been occurred by vermin(e.g., wild birds and herbivores) during the period between seeding and the cotyledon level. In this study, to minimize the damage by vermin and acquire the benefits such as protection against weeds and maintenance of water content in soil, immediately vinyl mulching after seeding was devised. Vinyl mulching has been generally covered with black color vinyl, that crop seeding locations cannot be detected by visible light range. Before punching vinyl, non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. For this study, the spline method was relatively faster than the other polynomial interpolation methods, because it has a lower maximum order of formulation when using a system such as the tridiagonal linear equation system which provided the capability of real-time processing. The temperature distribution corresponding to the distance between the crops was 10 cm, and the more clearly the leaf pattern of the crop was visually confirmed. The frequency difference was decreased, as the number of overlapped pixels was increased. Also the wave pattern of points where the crops were recognized were reduced.

  • PDF

Developing an On-Line Monitoring System for a Forest Hydrological Environment - Development of Hardware - (산림수문환경(山林水文環境) 모니터링을 위(爲)한 원거리(遠距離) 자동관측(自動觀測)시스템의 개발(開發) - 하드웨어를 중심(中心)으로 -)

  • Lee, Heon Ho;Suk, Soo Il
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.405-413
    • /
    • 2000
  • This study was conducted to develop an on-line monitoring system for a forest hydrological environment and its meteorological condition, such as temperature, wind direction and speed, rainfall and water level on V-notch, electrical conductivity(EC), potential of hydrogen(PH) by the motor drive sensor unit and measurement with a single-chip microprocessor as controller. These results are summarized as follows ; 1. The monitoring system consists of a signal process unit, motor drive sensor unit, radio modem unit and power supply. 2. The motor drive sensor unit protects the sensor from swift current or freezing and can constantly maintain fixed water level during measurements. 3. This monitoring system can transfer the data by radio modem. Additionally, this system can monitor hydrological conditions in real time. 4. The hardware was made of several modules with an independent CPU. They can be mounted, removed, repaired and added to. Their function can be changed and expanded. 5. These are the result of an accuracy test, the values of temperature, EC and pH measured within an error range of ${\pm}0.2^{\circ}C$, ${\pm}1{\mu}S$ and ${\pm}0.1pH$ respectively. 6. This monitoring system proved to be able to measure various factors for a forest hydrological environment in various experimental stations.

  • PDF

Immersive Smart Balance Board with Multiple Feedback (다중 피드백을 지원하는 몰입형 스마트 밸런스 보드)

  • Seung-Yong Lee;Seonho Lee;Junesung Park;Min-Chul Shin;Seung-Hyun Yoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.171-178
    • /
    • 2024
  • Exercises using a Balance Board (BB) are effective in developing balance, strengthening core muscles, and improving physical fitness and concentration. In particular, the Smart Balance Board (SBB), which integrates with various digital content, provides appropriate feedback compared to traditional balance boards, maximizing the effectiveness of the exercise. However, most systems only offer visual and auditory feedback, failing to evaluate the impact on user engagement, interest, and the accuracy of exercise postures. This study proposes an Immersive Smart Balance Board (I-SBB) that utilizes multiple sensors to enable training with various feedback mechanisms and precise postures. The proposed system, based on Arduino, consists of a gyro sensor for measuring the board's posture, a communication module for wired/wireless communication, an infrared sensor to guide the user's foot placement, and a vibration motor for tactile feedback. The board's posture measurements are smoothly corrected using a Kalman Filter, and the multi-sensor data is processed in real-time using FreeRTOS. The proposed I-SBB is shown to be effective in enhancing user concentration and engagement, as well as generating interest, by integrating with diverse content.

A study on the efficient early warning method using complex event processing (CEP) technique (복합 이벤트 처리기술을 적용한 효율적 재해경보 전파에 관한 연구)

  • Kim, Hyung-Woo;Kim, Goo-Soo;Chang, Sung-Bong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.157-161
    • /
    • 2009
  • In recent years, there is a remarkable progress in ICTs (Information and Communication Technologies), and then many attempts to apply ICTs to other industries are being made. In the field of disaster managements, ICTs such as RFID (Radio Frequency IDentification) and USN (Ubiquitous Sensor Network) are used to provide safe environments. Actually, various types of early warning systems using USN are now widely used to monitor natural disasters such as floods, landslides and earthquakes, and also to detect human-caused disasters such as fires, explosions and collapses. These early warning systems issue alarms rapidly when a disaster is detected or an event exceeds prescribed thresholds, and furthermore deliver alarm messages to disaster managers and citizens. In general, these systems consist of a number of various sensors and measure real-time stream data, which requires an efficient and rapid data processing technique. In this study, an event-driven architecture (EDA) is presented to collect event effectively and to provide an alert rapidly. A publish/subscribe event processing method to process simple event is introduced. Additionally, a complex event processing (CEP) technique is introduced to process complex data from various sensors and to provide prompt and reasonable decision supports when many disasters happen simultaneously. A basic concept of CEP technique is presented and the advantages of the technique in disaster management are also discussed. Then, how the main processing methods of CEP such as aggregation, correlation, and filtering can be applied to disaster management is considered. Finally, an example of flood forecasting and early alarm system in which CEP is incorporated is presented It is found that the CEP based on the EDA will provide an efficient early warning method when disaster happens.

  • PDF

Examining the Influence of TBM Chamber Condition and Transmission Distance on the Received Strength of Bluetooth Low Energy Signals: A Laboratory Simulation Experiment (TBM 챔버 상태와 전송 거리에 따른 저전력 블루투스 신호의 수신 강도 분석: 실험실 모사 실험)

  • Yosoon Choi;Hoyoung Jeong;Jeongju Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.425-434
    • /
    • 2023
  • To measure the wear amount of the TBM disk cutter in real time, it is important not only to automate the measurement using sensors, but also to stably transmit the measured data to the information processing system. In this study, we investigated the viability of utilizing Bluetooth Low Energy (BLE) technology to wirelessly transmit sensor data from the TBM cutter head to a receiver located at the chamber's rear. Through laboratory experiments, we analyzed the Received Signal Strength Index (RSSI) of the receiver considering various signal strength of the transmitter, separation distances between the transmitter and receiver and chamber fill materials. Our results demonstrate that wireless data transmission is feasible across all tested conditions when the transmitter signal strength is 0 dBm or higher.

Methodology for Processing In-Vehicle Traffic Data in Wireless Traffic Information Systems and Experimental Evaluation (무선통신 기반 교통정보시스템의 차내 교통정보 가공기법 개발 및 현장적용성 평가)

  • Park, Joon-Hyeong;Oh, Cheol;Kang, Kyeong-Pyo;Kim, Tae-Hyeong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.4
    • /
    • pp.14-27
    • /
    • 2009
  • Collection of invaluable real-time traffic data becomes available under ubiquitous transportation sensor networks (UTSN). Various research efforts have been made to utilize such useful data for deriving more accurate and reliable traffic information. This study presented a novel concept of decentralized traffic information and method to process traffic data which are obtained from inter-vehicle communications under the UTSN. In addition, an experimental evaluation to investigate the feasibility of the proposed method using probe vehicle data. Predictive travel times were estimated and evaluated for the feasibility investigation. Technical issues were derived and discussed to fully implement the proposed system. The outcomes of this study would be used as a guideline in designing better next-generation traffic information systems.

  • PDF

A Development of Fluxgate Sensor-based Drone Magnetic Exploration System (플럭스게이트 센서 기반 드론 자력탐사 시스템 개발)

  • Noh, Myounggun;Lee, Seulki;Lee, Heuisoon;Ahn, Taegyu
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.208-214
    • /
    • 2020
  • In this study, we have developed a drone magnetic exploration system (proto-type) using a fluxgate magnetic sensor. Hardware of the system consists of a fluxgate magnetometer, an inertial measurement unit (IMU), a GPS, and a communication module. And we have developed monitoring software, which enables it to transmit the measured data to the ground control system (GCS) in real time. The measured magnetic data are finally saved as 1 Hz data after passing through a notch filter and a band-pass filter. For verification of this system, a preliminary test was conducted to check the magnetic responses of a magnetic object first, then the field test was carried out in two iron mines. We tested the developed system on the field test in Pocheon, Gyeonggi and Jeongseon, Gangwon. The magnetic data from the developed drone system was very similar to those from unmanned airship system developed by Korea Institute of Geoscience and Mineral Resources (KIGAM). As a result, preliminary experiment and field test have demonstrated that this system is applicable for outdoor aeromagnetic exploration. It requires more studies to improve filter function and instrument performance to minimize noise in the future.

A Proposal of USN-based DER(Decentralized Energy Resources) Management System (USN 기반의 댁내 분산 전력 관리 시스템 제안)

  • Kim, Bo-Min;Kim, Jeong-Young;Bang, Hyun-Jin;Jang, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.871-874
    • /
    • 2010
  • Needs for Smart Grid development are increasing all over the world as a solution to its problem according to depletion of energy resources, climatic and environmental rapidly change and growing demand for electrical power. Especially decentralized power is attracting world's attention. In this mood a new era for a unit scale of decentralized power environment is on its way in building. However there is a problem to have to be solved in the uniformity of power quality because the amount of power generated from renewable energy resources such as wind power and solar light is very sensitive to climate fluctuation. And thus this paper tries to suggest an energy management method on basis of real time monitoring for meteorological data. In the current situation of lacking in USN-based killer application in Smart Grid field, this paper proposes the USN-based DER management system which collects the meteorological data and control power system througout utilizing wireless sensor network technique this business. This communication technique is regarded to be efficient in aspects of installation cost and tits maintenance cost. The proposed EMS model embodies the method for predicting the power generation by monitoring and analyzing the climatic data and controling the efficient power distribution between the renewable energy and the existing power. The ultimate goal of this paper is to provide the technological basis for achieving zero-energy house.

  • PDF

Development of Device Measuring Real-time Air Flow in Greenhouse (온실 공기유동 계측 시스템 개발)

  • Noh, Jae Seung;Kwon, Jinkyoung;Kim, Yu Yong
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.20-26
    • /
    • 2018
  • This study was conducted to develop a device for measuring the air flow by space variation through monitoring program, which acquires data by each point from each environmental sensor located in the greenhouse. The distribution of environmental factors(air temperature, humidity, wind speed, etc.) in the greenhouse is arranged at 12 points according to the spatial variation and a large number of measurement points (36 points in total) on the X, Y and Z axes were selected. Considering data loss and various greenhouse conditions, a bit rate was at 125kbit/s at low speed, so that the number of sensors can be expanded to 90 within greenhouse with dimensions of 100m by 100m. Those system programmed using MATLAB and LabVIEW was conducted to measure distributions of the air flow along the greenhouse in real time. It was also visualized interpolated the spatial distribution in the greenhouse. In order to verify the accuracy of CFD modeling and to improve the accuracy, it will compare the environmental variation such as air temperature, humidity, wind speed and $CO_2$ concentration in the greenhouse.