• Title/Summary/Keyword: Real-time quality monitoring

Search Result 448, Processing Time 0.024 seconds

Application of Neural Network Model to the Real-time Forecasting of Water Quality (실시간 수질 예측을 위한 신경망 모형의 적용)

  • Cho, Yong-Jin;Yeon, In-Sung;Lee, Jae-Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.321-326
    • /
    • 2004
  • The objective of this study is to test the applicability of neural network models to forecast water quality at Naesa and Pyongchang river. Water quality data devided into rainy day and non-rainy day to find characteristics of them. The mean and maximum data of rainy day show higher than those of non-rainy day. And discharge correlate with TOC at Pyongchang river. Neural network model is trained to the correlation of discharge with water quality. As a result, it is convinced that the proposed neural network model can apply to the analysis of real time water quality monitoring.

Embedded Hardware Tests for a Distributed Power Quality Monitoring System (분산전원 전력품질 모니터링 시스템을 위한 임베디드 하드웨어 테스트)

  • Shin, Myong-Jun;Kim, Sung-Jong;Son, Young-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.151-153
    • /
    • 2006
  • When distributed powers are interconnected to the grid, lack of source stability may cause some events that should be measured and stored as soon as they occur. This paper presents a real-time hardware system that has been developed for quick and reliable monitoring of the distributed powers quality. The system is composed of a digital signal processor (MPC7410, Motorola) and a 16 bits A/D board (VMIVME3122, GE). To guarantee the real time operation, it is based on a real time OS (VxWorks). Hardware tests of the embedded system have been made to check the performances of the proposed system. Test signals of several events are generated by using a LabView (hardware) system. The tests show that the system complies with the desired IEEE standard for power quality monitoring.

  • PDF

Review of Internet of Things-Based Artificial Intelligence Analysis Method through Real-Time Indoor Air Quality and Health Effect Monitoring: Focusing on Indoor Air Pollution That Are Harmful to the Respiratory Organ

  • Eunmi Mun;Jaehyuk Cho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Everyone is aware that air and environmental pollutants are harmful to health. Among them, indoor air quality directly affects physical health, such as respiratory rather than outdoor air. However, studies that have examined the correlation between environmental and health information have been conducted with public data targeting large cohorts, and studies with real-time data analysis are insufficient. Therefore, this research explores the research with an indoor air quality monitoring (AQM) system based on developing environmental detection sensors and the internet of things to collect, monitor, and analyze environmental and health data from various data sources in real-time. It explores the usage of wearable devices for health monitoring systems. In addition, the availability of big data and artificial intelligence analysis and prediction has increased, investigating algorithmic studies for accurate prediction of hazardous environments and health impacts. Regarding health effects, techniques to prevent respiratory and related diseases were reviewed.

Power Quality Monitoring Algorithm Using the Protective Relay (보호계전기를 이용한 전기 품질 감시 기법 연구)

  • Choi In. S.;Lee Kang. S.;Choi Myeon. S.;Lim Seong. I.;Lee Seung. J.
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.581-588
    • /
    • 2004
  • Power qualify monitoring system is devoted to more concern than before, because the innovation of industrial technology needs more accurate instruments and more advanced power quality. This paper was studied on using data of the protective relay by Power Quality Monitor. This paper was proposed the wave storage condition and monitoring clauses of the protective relay as a power quality monitoring device. The protective relay will have problem to save data for PQM analysis because the protective relay memory is limited. Therefore this paper was proposed new a data compression of data got from the protective relay. This method is wave compression comparison algorithm using the DFT. The compression rate is higher than any other established method. This method can be real time storage. This algorithm is verified using the comparison among other compression rate and proved by Real Time Digital Simulator (RTDS).

A Study on Welding Process Algorithm through Real-time Current Waveform Analysis (실시간 공정신호를 통한 용접공정 알고리즘에 관한 연구)

  • Yoon, Jin Young;Lee, Young Min;Shin, Soon Cheol;Choi, Hae Woon
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.24-29
    • /
    • 2015
  • The current waveform was analysed to monitor the weld quality in real time process. The acquired current waveform was discretely analysed for the top and bottom limits of peaks as well as the pulse frequency measurement. Fast Fourier Transform was implemented in the program to monitor the pulse frequency in real time. The developed algorithm or program was tested for the validation purpose. The cross-section of weld profile was compared to the current waveform profile to correlate the monitored signal and the actual parts. Pulse frequency was also used as auxiliary tool for the quality monitoring. Based on the results, it was possible to evaluate the quality of welding by measure the current waveform profile and frequency measurement.

Development of Real-Time Water Quality Abnormality Warning System for Using Multivariate Statistical Method (다변량 통계기법을 활용한 실시간 수질이상 유무 판단 시스템 개발)

  • Heo, Tae-Young;Jeon, Hang-Bae;Park, Sang-Min;Lee, Young-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.137-144
    • /
    • 2015
  • The purpose of this study is to develop an warning system to detect real-time water quality abnormality using a multivariate statistical approach. In this study, we applied principal component analysis among multivariate data analyses which was used for the correlation between water quality parameters considering the real-time algorithm to determine abnormality in water quality. We applied our approach to real field data and showed the utilization of algorithm for the real-time monitoring to find water quality abnormality. In addition, our approach with Korea Meterological Adminstration database identified heavy rain data due to climate change is one of the most important factors to explain water quality abnormality.

Real-time Water Monitoring System for Small Water Supply Facility using High Reliable Wireless Sensor Network (고신뢰 무선센서네트워크를 이용한 실시간 수질 모니터링 시스템)

  • Kang, Hoyong;Jang, Youn-Seon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.331-341
    • /
    • 2015
  • In this paper, real-time water quality monitoring system of small water supply facilities based on IEEE 802.15.4e-2012 DSME MAC and IEEE 802.15.4g-2012 PHY standard is presented, which is capable to acquire for highly reliable water quality information in the wide outdoor areas for effective water quality management of small water quality facilities is distributed in the long distance and remote areas. Previously, Long distance transmission is difficult in most water quality sensor module is using RS-485 protocol. But with this system, even in harsh outdoor environment, it is possible to establish a radio wave sensor in a wide area network, and not only water quality sensor shall be connected to the wireless system, but also wireless integrated management system shall provide more effective way of management of the numerous small water supply facilities spread throughout the community, so that the administrator can remotely monitor the data of water turbidity, pH, residual chlorine in the water-supply, water-level, and generate alarm to cope with risks. The management of small water facilities is done by residents will be very effective to notice water quality information of small water facilities to residents.

Real-time evaluation of automatic production quality control for friction welding machine (摩擦熔接機械 의 自動생산品質制御 實時間 評價)

  • 오세규;임우조;김형자
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.757-766
    • /
    • 1985
  • Both in-process quality control and high reliability of the weld is one of the major concerns in applying friction welding to the economical and qualified mass-production. No reliable nondestructive monitoring method is available at present to determine the real-time evaluation of automatic production quality control for friction welding machine. This paper, so that, presents the experimental examinations and statistical quantitative analysis of the correlation between the initial cumulative counts of acoustic emission(AE) occurring during plastic deformation period of the welding and the tensile strength of the welded joints as well as the various welding variables, as a new approach which attempts finally to develop an on-line (or real-time) quality monitoring system and a program for the process of real-time friction welding quality evaluation by initial AE cumulative counts. As one of the important results, it was well confirmed that the initial AE cumulative counts were quantitatively and cubically correlated with reliability of 95% confidence level to the joint strength of the welds, bar-to-bar (SCM4 to SUM31, SCM4 to SUM24L) and that an AE technique using initial AE counts can be reliably applied to real-time strength evaluation of the welded joints, and that such a program of the system was well developed resulting in practical possibility of real-time quality control more than 100% joint efficiency showing good weld with no micro-structural defects.

A Study of Real-Time Weldability Estimation of Resistance Spot Welding using Fuzzy Algorithm (퍼지 알고리즘을 이용한 저항 점 용접의 실시간 품질 평가 기술 개발에 관한 연구)

  • 조용준;이세헌;엄기원
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.76-85
    • /
    • 1998
  • The resistance spot welding process has been used for joining the sheet metal in automotive engineering. In the resistance spot welding, the weld quality is very important, because the quality of weld is one of the most important factors to the automobile quality. The size of he molten nugget has been utilized to estimate the weld quality. However, it is not easy to find the weld defects. For weldability estimation, we have to use the nondestructive method such as X-ray or ultrasonic inspection. But these kinds of approaches are not suitable for detecting the defects in real time. The purpose of this study is to develop the real time monitoring of the weld quality in the resistance spot welding. Obtained data were used to estimate weldability using fuzzy algorithm. It is sound that this monitoring and estimation system can be useful to improve the weld quality in the resistance spot welding process and it is possible to estimate the weldability in real time.

  • PDF

Implementation of Real-time Monitoring and Remote Control System Testbed based on Digital Twin (디지털 트윈을 활용한 실시간 모니터링 및 원격제어 시스템의 테스트베드 구현)

  • Yoon, Jung-Eun;Kim, Won-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.325-334
    • /
    • 2022
  • Digital twin has the advantages of quality improvement and cost reduction, so it is widely applied to various industries. In this paper, a method to implement the major technologies of digital twin easily and quickly is presented. These include data management and relay servers, real-time monitoring applications including remote control interfaces, and direct connection protocols for video streaming. In addition, an algorithm for controlling a two-wheeled vehicle with a 2D interface is also proposed. The implemented system performs near real-time synchronization between the real environment and the virtual space. The delay time that occurs in remote control of the vehicle in the real environment was compared with the results of applying the proposed delay time reduction method. In addition, in the case of 2D interface-based control, an algorithm that can guarantee the user experience was implemented and applied to the actual environment and verified through experiments.