DOI QR코드

DOI QR Code

Development of Real-Time Water Quality Abnormality Warning System for Using Multivariate Statistical Method

다변량 통계기법을 활용한 실시간 수질이상 유무 판단 시스템 개발

  • Heo, Tae-Young (Department of Information & Statistics, Chungbuk National University) ;
  • Jeon, Hang-Bae (Department of Information & Statistics, Chungbuk National University) ;
  • Park, Sang-Min (Monitoring and Analysis Division, Saemangeum Regional Environmental Office) ;
  • Lee, Young-Joo (Water Research Center, K-water Institute, K-water)
  • Received : 2014.06.03
  • Accepted : 2015.02.03
  • Published : 2015.03.31

Abstract

The purpose of this study is to develop an warning system to detect real-time water quality abnormality using a multivariate statistical approach. In this study, we applied principal component analysis among multivariate data analyses which was used for the correlation between water quality parameters considering the real-time algorithm to determine abnormality in water quality. We applied our approach to real field data and showed the utilization of algorithm for the real-time monitoring to find water quality abnormality. In addition, our approach with Korea Meterological Adminstration database identified heavy rain data due to climate change is one of the most important factors to explain water quality abnormality.

본 연구는 다변량 통계기법 중 하나인 주성분분석을 활용하여 실시간으로 수질이상 유무를 판단할 수 있는 경보시스템 개발을 목적으로 하였다. 본 연구에서는 다변량 분석 방법 중 수질항목 간의 상관성을 고려한 주성분 분석 방법을 실시간으로 수질이상 유무를 판단하는 알고리즘에 적용시켰다. K-water에서 제공하는 실제 자료를 이용하여 수질 이상에 대한 실시간 감시 알고리즘의 활용성을 검증하였으며, 집중호우 등과 같은 기후변화에 따른 수질이상에 대해서는 기상청 자료와의 비교를 통해 검증하였다.

Keywords

References

  1. Oh, H. J., Hwang, T. M., Jung, J. H. and Bahn, S. H., "Development of Web-Based Auto Monitoring System for the Control of Conventional Water Treatment System," Proceeding of KSEE, Chonbuk University, pp. 1086-1090(2004).
  2. Mason, R. L., Tracy, N. D. and Young, J. C., "Monitoring a multivariate step process," J. Qual. Technol., 28, 39-50(1996).
  3. Mason, R. L. and Young J. C., "Multivariate Statistical Process Control with Industrial Applications," ASA-SIAM(2002).
  4. Nomikos, P. and MacGregor, J. F., "Multivariate SPC Charts for Monitoring Batch Processes," Technometrics, 37(1), 41-58(1995). https://doi.org/10.1080/00401706.1995.10485888
  5. Wise, B. M. and Gallagher, N. B., "The Process Chemometrics Approach to Process Monitoring and Fault Detection," J. Proc. Control, 6(6), 329-348(1996). https://doi.org/10.1016/0959-1524(96)00009-1
  6. Chen, Q., Wynne, R. J., Goulding, P. and Sandoz, D., "The Application of Principal Component Analysis and Kernel Density Estimation to Enhance Process Monitoring," Control Eng. Prac., 8(5), 531-543(2000). https://doi.org/10.1016/S0967-0661(99)00191-4
  7. Kourti, T., "Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions," J. Chemometrics, 17(1), 93-109(2003). https://doi.org/10.1002/cem.778
  8. Montgomery, D. C., Introduction to Statistical Quality Control, 3rd Edition, John Wiley & Sons Inc., USA(1996).
  9. Kourti, T. and MacGregor, J. F., "Process Analysis, Monitoring and Diagnosis Using Multivariate Projection Methods," Chemomet. Intelligent Laboratory Syst., 28(1), 3-21(1995). https://doi.org/10.1016/0169-7439(95)80036-9
  10. Yang, Y. J., Haught, R. C. and Goodrich, J. A., "Real-time contaminant detection and classification in a drinking water pipe using conventional water quality sensors: techniques and experimental results," J. Environ. Manage., 90(8), 2494-2506 (2009). https://doi.org/10.1016/j.jenvman.2009.01.021
  11. Lennox, J. and Rosen, C., "Adaptive multiscale principal components analysis for online monitoring of wastewater treatment," Water Sci. Technol., 45(4-5), 227-235(2002).
  12. Baggiani, F. and Marsili-Libelli, S., "Real-time fault detection and isolation in biological wastewater treatment plants," Water Sci. Technol., 60(11), 2949-2961(2009). https://doi.org/10.2166/wst.2009.723
  13. Choi, S. W., Martin, E. B., Morris, A. J. and Lee, I., "Adaptive Multivariate Statistical Process Control for Monitoring Time-varying Processes," Ind. Eng. Chem. Res., 45(9), 3108-3118(2006). https://doi.org/10.1021/ie050391w
  14. Hotelling, H., "The Generalization of Student's Ratio," Annal. Mathematical Statistics, 2, 360-378(1931). https://doi.org/10.1214/aoms/1177732979
  15. Hotelling, H., Multivariate Quality Control, McGraw-Hill, New York(1947).
  16. Mason, R. L., Tracy, N. D. and Young, J. C., "Decomposition of $T^2$ for multivariate control chart interpretation," J. Qual. Technol., 27(2), 99-108(1995).
  17. Mason, R. L., Tracy, N. D. and Young, J. C., "A practical approach for interpreting multivariate $T^2$ control chart signals," J. Qual. Technol., 29(4), 396-406(1997).
  18. Mason, R. L. and Young, J. C., "Improving the sensitivity of the $T^2$ statistic in multivariate process Control," J. Qual. Technol., 31(2), 155-165(1999).
  19. George, J. P., Chen, Z. and Shaw, P., "Fault detection of drinking water treatment process using PCA and Hotelling's $T^2$ chart," World Acad. Sci. Eng. Technol., 3, 733-738(2009).
  20. Jackson, J. E. and Mudholkar, G. S. "Control procedures for residuals associated with principal component analysis," Technometrics, 21(3), 341-349(1979). https://doi.org/10.1080/00401706.1979.10489779

Cited by

  1. Application of Isolation Forest Technique for Outlier Detection in Water Quality Data vol.40, pp.12, 2018, https://doi.org/10.4491/KSEE.2018.40.12.473