• Title/Summary/Keyword: Real-time mapping system

Search Result 208, Processing Time 0.024 seconds

Design and Implementation of A SVG Wireless-Map Mapping Viewer : A Case Study on Mobile GIS for Forest Fire Extinguishment Ground Teams (SVG 무선지도 매핑 뷰어의 설계 및 구현 : 지상진화대 Mobile GIS 적용 사례를 중심으로)

  • Bu, Ki-Dong;Jo, Myung-Hee;Jo, Yun-Won;Ahn, Hae-Soon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.10-19
    • /
    • 2008
  • This study designed and implemented a J2ME based on mapping viewer to browse the SVG based wireless-map in mobile phone. This proposed technique was efficiently applied to a forest fire extinguishment information management system by mapping the exact location of important objects on wireless-map in wireless network. As the result, the study helps to guide the safe and efficient extinguishment affairs and provides the safe extinguishment environment for ground fire fighting teams in real time. And also this technique presents the way to move the client mapping function such as representation of the moving coordinates to server and made it possible to operate SVG based viewer in personal cellular phone.

  • PDF

A Study on Community Mapping for ICT-Based Livestock Infectious Disease Response (ICT 기반 가축 감염병 대응을 위한 커뮤니티 매핑 연구)

  • Koo, Jee Hee;Pyeon, Mu Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.247-257
    • /
    • 2020
  • Livestock epidemics, such as foot and mouth disease, are causing enormous economic losses due to their strong infectious power. Early detection of infectious diseases in livestock is very important, but it is difficult to diagnose early in individual farms, and there are frequent cases of transmission through inter-farm movement such as veterinarians and feeding vehicles. In this study, we studied the technology that enables rapid diagnosis without veterinarian farm visits and prevents further spread by automatically monitoring the body temperature of livestock using ubiquitous-based information and communication technology in the early stage of onset and sending it in real time. We have presented a technique for systematically managing livestock epidemics at the farm level, regional level, and national level by using the community mapping technique by using the remote medical treatment system linked to the automatically collected information. In this process, community mapping items for each step and stakeholders were derived for crowd sourcing based spatial information technology.

MPSoC Design Space Exploration Based on Static Analysis of Process Network Model (프로세스 네트워크 모델의 정적 분석에 기반을 둔 다중 프로세서 시스템 온 칩 설계 공간 탐색)

  • Ahn, Yong-Jin;Choi, Ki-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.10
    • /
    • pp.7-16
    • /
    • 2007
  • In this paper, we introduce a new design environment for efficient multiprocessor system-on-chip design space exploration. The design environment takes a process network model as input system specification. The process network model has been widely used for modeling signal processing applications because of its excellent modeling power. However, it has limitation in predictability, which could cause severe problem for real time systems. This paper proposes a new approach that enables static analysis of a process network model by converting it to a hierarchical synchronous dataflow model. For efficient design space exploration in the early design step, mapping application to target architectures has been a crucial part for finding better solution. In this paper, we propose an efficient mapping algorithm. Our mapping algorithm supports both single bus architecture and multiple bus architecture. In the experiments, we show that the automatic conversion approach of the process network model for static analysis is performed successfully for several signal processing applications, and show the effectiveness of our mapping algorithm by comparing it with previous approaches.

Prediction of Dynamic Response of Structures Using CMAC (CMAC을 이용한 구조물의 동적응답 예측)

  • Kim, Dong Hyawn;Kim, Hyon Taek;Lee, In Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.605-615
    • /
    • 2000
  • Cerebellar model articulation controller (CMAC) is introduced and used for the identification of structural dynamic model. CMAC has fascinating features in learning speed. It can learn structural response within a few seconds. Therefore it is suitable for the real time identification structures. Real time identification is required in the control of structure which may be damaged or undergo severe change in mechanical properties due to shrinkage or relaxation etc. In numerical examples, it is shown that CMAC trained with the dynamic response of three-story building can predict responses under not trained earthquakes with allowable error. Finally, CMAC has great potential in structural and control engineering.

  • PDF

Three-dimensional Map Construction of Indoor Environment Based on RGB-D SLAM Scheme

  • Huang, He;Weng, FuZhou;Hu, Bo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.45-53
    • /
    • 2019
  • RGB-D SLAM (Simultaneous Localization and Mapping) refers to the technology of using deep camera as a visual sensor for SLAM. In view of the disadvantages of high cost and indefinite scale in the construction of maps for laser sensors and traditional single and binocular cameras, a method for creating three-dimensional map of indoor environment with deep environment data combined with RGB-D SLAM scheme is studied. The method uses a mobile robot system equipped with a consumer-grade RGB-D sensor (Kinect) to acquire depth data, and then creates indoor three-dimensional point cloud maps in real time through key technologies such as positioning point generation, closed-loop detection, and map construction. The actual field experiment results show that the average error of the point cloud map created by the algorithm is 0.0045m, which ensures the stability of the construction using deep data and can accurately create real-time three-dimensional maps of indoor unknown environment.

Developing Virtual Tour Content for the Inside and Outside of a Building using Drones and Matterport

  • Tchomdji, Luther Oberlin Kwekam;Park, Soo-jin;Kim, Rihwan
    • International Journal of Contents
    • /
    • v.18 no.3
    • /
    • pp.74-84
    • /
    • 2022
  • The global impact of the Covid-19 pandemic on education has resulted in the near-complete closure of schools, early childhood education and care (ECEC) facilities, universities, and colleges. To help the educational system with social distancing during this pandemic, in this paper the creation of a simple 3D virtual tour will be of a great contribution. This web cyber tour will be program with JavaScript programming language. The development of this web cyber tour is to help the students and staffs to have access to the university infrastructure at a faraway distance during this difficult moment of the pandemic. The drone and matterport are the two devices used in the realization of this website tour. As a result, Users will be able to view a 3D model of the university building (drone) as well as a real-time tour of its inside (matterport) before uploading the model for real-time display by the help of this website tour. Since the users can enjoy the 3D model of the university infrastructure with all angles at a far distance through the website, it will solve the problem of Covid-19 infection in the university. It will also provide students who cannot be present on-site, with detailed information about the campus.

Detection of Direction Indicators on Road Surfaces Using Inverse Perspective Mapping and NN (원근투영법과 신경망을 이용한 도로노면 방향지시기호 검출 연구)

  • Kim, Jong Bae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.4
    • /
    • pp.201-208
    • /
    • 2015
  • This paper proposes a method for detecting the direction indicator shown in the road surface efficiently from the black box system installed on the vehicle. In the proposed method, the direction indicators are detected by inverse perspective mapping(IPM) and bag of visual features(BOF)-based NN classifier. In order to apply the proposed method to real-time environments, the candidated regions of direction indicator in an image only performs IPM, and BOF-based NN is used for the classification of feature information from direction indicators. The results of applying the proposed method to the road surface direction indicators detection and recognition, the detection accuracy was presented at least about 89%, and the method presents a relatively high detection rate in the various road conditions. Thus it can be seen that the proposed method is applied to safe driving support systems available.

Visual servo control of robots using fuzzy-neural-network (퍼지신경망을 이용한 로보트의 비쥬얼서보제어)

  • 서은택;정진현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.566-571
    • /
    • 1994
  • This paper presents in image-based visual servo control scheme for tracking a workpiece with a hand-eye coordinated robotic system using the fuzzy-neural-network. The goal is to control the relative position and orientation between the end-effector and a moving workpiece using a single camera mounted on the end-effector of robot manipulator. We developed a fuzzy-neural-network that consists of a network-model fuzzy system and supervised learning rules. Fuzzy-neural-network is applied to approximate the nonlinear mapping which transforms the features and theire change into the desired camera motion. In addition a control strategy for real-time relative motion control based on this approximation is presented. Computer simulation results are illustrated to show the effectiveness of the fuzzy-neural-network method for visual servoing of robot manipulator.

  • PDF

Development of Error Compensation Algorithm for Image based Measurement System (미세부품 영상 측정시 진동에 의한 오차 보상 알고리즘 개발)

  • Pyo Chang Ryul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.102-108
    • /
    • 2004
  • In this paper, we studied a vibration problem that is critical and common to most precision measurement systems. For micro mechanical part measurements, results obtained from the vision-based precision measurement system may contain errors due to the vibration. In order to defeat this generic problem, for the current study, a PC based image processing technique was used first, to assess the effect of the vibration to the precision measurement and second, to develop an in-situ calibration algorithm that automatically compensate the measurement results in real time. We used a set of stereoscopic CCD cameras to acquire the images for the dimensional measurement and the reference measurement. The mapping function was obtained through the in-situ calibration to compensate the measurement results and the statistical analysis for the actual results is provided in the paper. Based on the current statistical study, it is expected to obtain high precision results for the micro measurement systems.

A Design of WBAN Data Integration System for the HL7-based patient management

  • Hwang, Chigon;Shin, Hyoyoung;Lee, Jongyong;Jung, Kyedong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.66-69
    • /
    • 2015
  • Recently with the development of IT technology, the medical technology have been developed in various ways. Among them, WBAN can check the state of the patient in real time. However, the data generated by these techniques have a problem that they have heterogeneous properties depending on the type of sensors and devices. In this paper, we proposed a method using meta repository as a way to provide the sensing data of WBAN for the health care system by integrating along the HL7 standard item.