• Title/Summary/Keyword: Real-time driving

Search Result 684, Processing Time 0.024 seconds

A Study on Provision of Real-Time Safety Information Considering Real-Time Vehicular Data and Road Traffic Condition (실시간 차량정보 및 도로교통상황을 고려한 실시간 안전정보 제공에 관한 연구)

  • Ko, Han-Geom;Lee, Jin-Soo;Kim, Ji-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4D
    • /
    • pp.291-303
    • /
    • 2012
  • In order to lead safe driving, it is better to provide dynamic and detailed information on how the driver using the relevant road should behave as concerning movements of individual car rather than providing monotone and static information of reducing of speed to unspecified drivers. Assuming road and communication of highway where real-time collection and transfer of information on vehicles and road traffic status is possible, the purpose of this study was to provide real-time safe distance by considering road traffic condition such as road condition and driving condition, travel speed and distance between preceding/following vehicles. We intended to provide basic information about dangerous situation by defining different values of condition based column ($C_{condition}$) in accordance with the road surface condition, based on which Real-time Safety Distance Index(RSDI) is to be calculated comprehensively reflecting speed of preceding and following vehicles, distance between vehicles, vertical alignment and road surface condition on the scope of expression column ($C_n$). We intended to enable the driver to secure safety by providing the calculated Real-time Safety Distance Index (RSDI) so that the driver can intuitively sense and sufficiently cope with a dangerous situation where collision of vehicles may occur. The calculated RSDI value is comprised of 30 unit columns and will be provided to the driver being divided into risk evaluation grades of 3 predetermined steps, 'warning', 'dangerous' and 'normal'.

An Event-Driven Failure Analysis System for Real-Time Prognosis (실시간 고장 예방을 위한 이벤트 기반 결함원인분석 시스템)

  • Lee, Yang Ji;Kim, Duck Young;Hwang, Min Soon;Cheong, Young Soo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.4
    • /
    • pp.250-257
    • /
    • 2013
  • This paper introduces a failure analysis procedure that underpins real-time fault prognosis. In the previous study, we developed a systematic eventization procedure which makes it possible to reduce the original data size into a manageable one in the form of event logs and eventually to extract failure patterns efficiently from the reduced data. Failure patterns are then extracted in the form of event sequences by sequence-mining algorithms, (e.g. FP-Tree algorithm). Extracted patterns are stored in a failure pattern library, and eventually, we use the stored failure pattern information to predict potential failures. The two practical case studies (marine diesel engine and SIRIUS-II car engine) provide empirical support for the performance of the proposed failure analysis procedure. This procedure can be easily extended for wide application fields of failure analysis such as vehicle and machine diagnostics. Furthermore, it can be applied to human health monitoring & prognosis, so that human body signals could be efficiently analyzed.

Performance Assessment of a Lithium-Polymer Battery for HEV Utilizing Pack-Level Battery Hardware-in-the-Loop-Simulation System

  • Han, Sekyung;Lim, Jawhwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1431-1438
    • /
    • 2013
  • A pack-level battery hardware-in-the-loop simulation (B-HILS) platform is implemented. It consists of dynamic vehicle models using PSAT and multiple control interfaces including real-time 3D driving and GPS mode. In real-time 3D driving mode, user can drive a virtual vehicle using actual drive equipment such as steering wheel and accelerator to generate the cycle profile of the battery. In GPS mode, actual road traffic and terrain effects can be simulated using GPS data while the trajectory is displayed on Google map. In the latter part of the paper, several performance tests of an actual lithium-polymer battery pack are carried out utilizing the developed system. All experiments are conducted as parts of actual development process of a commercial battery pack adopting 2nd generation Prius as a target vehicle model. Through the experiments, the low temperature performance and fuel efficiency of the battery are quantitatively investigated in comparison with the original nickel-metal hydride (NiMH) pack of the Prius.

Detecting Lane Departure Based on GIS Using DGPS (DGPS를 이용한 GIS기반의 차선 이탈 검지 연구)

  • Moon, Sang-Chan;Lee, Soon-Geul;Kim, Jae-Jun;Kim, Byoung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.16-24
    • /
    • 2012
  • This paper proposes a method utilizing Differential Global Position System (DGPS) with Real-Time Kinematic (RTK) and pre-built Geo-graphic Information System (GIS) to detect lane departure of a vehicle. The position of a vehicle measured by DGPS with RTK has 18 cm-level accuracy. The preconditioned GIS data giving accurate position information of the traffic lanes is used to set up coordinate system and to enable fast calculation of the relative position of the vehicle within the traffic lanes. This relative position can be used for safe driving by preventing the vehicle from departing lane carelessly. The proposed system can be a key component in functions such as vehicle guidance, driver alert and assistance, and the smart highway that eventually enables autonomous driving supporting system. Experimental results show the ability of the system to meet the accuracy and robustness to detect lane departure of a vehicle at high speed.

Evaluation of electronic stability controllers using hardware-in-the-loop vehicle simulator

  • Emirler, Mumin Tolga;Gozu, Murat;Uygan, Ismail Meric Can;Boke, Tevfik Ali;Guvenc, Bilin Aksun;Guvenc, Levent
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.123-141
    • /
    • 2018
  • Hardware-in-the-loop (HiL) simulation is a very powerful tool to design, test and verify automotive control systems. However, well-validated and high degree of freedom vehicle models have to be utilized in these simulations in order to obtain realistic results. In this paper, a vehicle dynamics model developed in the Carsim Real Time program environment and its validation has been performed using experimental results. The developed Carsim real time model has been employed in the Tofas R&D hardware-in-the-loop simulator. Experimental and hardware-in-the-loop simulation results have been compared for the standard FMVSS No. 126 test and the results have been found to be in good agreement with each other. Two electronic stability control (ESC) algorithms, named the Basic ESC and the Integrated ESC, taken from the earlier work of the authors have been tested and evaluated in the hardware-in-the-loop simulator. Different evaluation methods have been formulated and used to compare these ESC algorithms. As a result, the Integrated ESC system has been shown superior performance as compared to the Basic ESC algorithm.

Intelligent Drowsiness Drive Warning System (지능형 졸음 운전 경고 시스템)

  • Joo, Young-Hoon;Kim, Jin-Kyu;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.223-229
    • /
    • 2008
  • In this paper. we propose the real-time vision system which judges drowsiness driving based on levels of drivers' fatigue. The proposed system is to prevent traffic accidents by warning the drowsiness and carelessness using face-image analysis and fuzzy logic algorithm. We find the face position and eye areas by using fuzzy skin filter and virtual face model in order to develop the real-time face detection algorithm, and we measure the eye blinking frequency and eye closure duration by using their informations. And then we propose the method for estimating the levels of drivel's fatigue based on measured data by using the fuzzy logic and for deciding whether drowsiness driving is or not. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

Reliable Multicast MAC Protocol for Cooperative Autonomous Vehicles (협력적 자율 차량을 위한 신뢰성있는 멀티케스트 MAC 프로토콜)

  • Kim, Jungsook;Kim, Juwan;Choi, Jeongdan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.3
    • /
    • pp.180-187
    • /
    • 2014
  • This paper introduces reliable multicast MAC protocol for cooperative unmanned vehicles. cooperative unmanned vehicles communicate with infrastructure and other unmanned vehicles in order to increase driving safety. They exchange information related to driving and thus it requires real-time and reliable multicast. However, the international vehicular communication standard, IEEE 802.11p WAVE, does not provide a reliable multicast scheme on the MAC layer. To address the problems of reliability, we propose a reliable multicast protocol called WiVCL, which avoids contention and collision. Our evaluation shows that the WiVCL achieves a high degree of reliability and real-time features.

The Design and Implementation of IoT based Remote Control System for Active Connected Cars (능동형 커넥티드 카를 위한 IoT기반 원격제어 시스템의 설계 및 구현)

  • Lee, Yun-Seop;Jang, Mun-Seok;Choi, Sang-Bang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.703-709
    • /
    • 2019
  • This paper proposes a monitoring and remote control system, an essential part of In Vehicle Infotainment (IVI) and Human Vehicle Interface (HVI) to provide safety and convenience to a driver. The system utilizes Bluetooth for a short range communication and utilizes WCDMA for a long range communication to enhance efficiency. In this paper, an integrated controller, which integrates a CAN communication module, a Bluetooth communication module, a WCDMA communication module, is designed to control a car. Also, a remote server for managing data is designed to provide real-time monitoring and remote control for a user via smart devices. Experiment results show that all the proposed remote control, driving log, real-time monitoring, and diagnostics functions are working properly. With the proposed system, a driver can drive safely by monitoring and inspecting a car before driving via smart devices, and control conveniently by controlling a car remotely.

Development of Cutting Route Recognition Technology of a Double-Blade Road Cutter Using a Vision Sensor (비전센서를 활용한 양날 도로절단기의 절단경로 인식 기술 개발)

  • Myoung Kook Seo;Jin Wook Kown;Hwang Hun Jeong;Jung Ham Ju;Young Jin Kim
    • Journal of Drive and Control
    • /
    • v.20 no.1
    • /
    • pp.8-15
    • /
    • 2023
  • With the recent trend of intelligence and automation of construction work, a double-blade road cutter is being developed that automatically enables cutting along the cutting line marked on the road using a vision system. The road cutter can recognize the cutting line through the camera and correct the driving route in real-time, and it detects the load of the cutting blade in real-time to control the driving speed in case of overload to protect workers and cutting blades. In this study, a vision system mounted on a double-blade road cutter was developed. A cutting route recognition technology was developed to stably recognize cutting lines displayed on non-uniform road surfaces, and performance was verified in similar environments. In addition, a vision sensor protection module was developed to prevent foreign substances (dust, water, etc.) generated during cutting from being attached to the camera.

Development of Real-time Traffic Information Generation Technology Using Traffic Infrastructure Sensor Fusion Technology (교통인프라 센서융합 기술을 활용한 실시간 교통정보 생성 기술 개발)

  • Sung Jin Kim;Su Ho Han;Gi Hoan Kim;Jung Rae Kim
    • Journal of Information Technology Services
    • /
    • v.22 no.2
    • /
    • pp.57-70
    • /
    • 2023
  • In order to establish an autonomous driving environment, it is necessary to study traffic safety and demand prediction by analyzing information generated from the transportation infrastructure beyond relying on sensors by the vehicle itself. In this paper, we propose a real-time traffic information generation method using sensor convergence technology of transportation infrastructure. The proposed method uses sensors such as cameras and radars installed in the transportation infrastructure to generate information such as crosswalk pedestrian presence or absence, crosswalk pause judgment, distance to stop line, queue, head distance, and car distance according to each characteristic. create information An experiment was conducted by comparing the proposed method with the drone measurement result by establishing a demonstration environment. As a result of the experiment, it was confirmed that it was possible to recognize pedestrians at crosswalks and the judgment of a pause in front of a crosswalk, and most data such as distance to the stop line and queues showed more than 95% accuracy, so it was judged to be usable.