• Title/Summary/Keyword: Real-time applications

Search Result 2,353, Processing Time 0.035 seconds

The Design and Implementation of a Control System for TCSC in the KERI Analog Power Simulator

  • Jeon, Jin-Hong;Kim, Kwang-Su;Kim, Ji-Won;Oh, Tae-Kyoo
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.129-133
    • /
    • 2004
  • This paper deals with the design and implementation of a TCSC (Thyristor Controlled Series Capacitor) simulator, which is a module for an analog type power system simulator. Principally, it presents configuration of controller hardware/software and its experimental results. An analog type power system simulator consists of numerous power system components, such as various types of generator models, scale-downed transmission line modules, transformer models, switches and FACTS (Flexible AC Transmission System) devices. It has been utilized for the verification of the control algorithm and the study of system characteristics analysis. This TCSC simulator is designed for 50% line compensation rate and considered for damping resister characteristic analysis. Its power rate is three phase 380V 20kVA. For hardware extendibility, its controller is designed with VMEBUS and its main CPU is TMS320C32 DSP (Digital Signal Processor). For real time control and communications, its controller is applied to the RTOS (Real Time Operation System) for multi-tasking. This RTOS is uC/OS-II. The experimental results of capacitive mode and inductive mode operations verify the fundamental operations of the TCSC.

Load Balancing for Zone Routing Protocol to Support QoS in Ad Hoc Network

  • Chimmanee, Sanon;Wipusitwarakun, Komwut;Runggeratigul, Suwan
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1685-1688
    • /
    • 2002
  • Application Routing Load Balancing (ARLB) is a novel load balancing mode that combines QoS routing and load balancing in per application to support QoS far real-time application based on wired network. Zone Routing Protocol (ZRP) is a recent hybrid proactive/reactive routing approach in an attempt to achieve scalability of ad-hoc network. This routing approach has the potential to be efficient in the generation of control traffic than traditional routing schemes. Up to now, without proper load balancing tools, the ZRP can actually guarantee QoS for delay-sensitive applications when congestion occurred in ad-hoc network. In this paper, we propose the ARLB to improve QoS fur delay-sensitive applications based on ZRP in ad-hoc network when congestion occurred and to be forwarding mechanism fur route coupling to support QoS for real-time applications. The critical point is that the routing metric of ARLB is originally designed for wired network environment. Therefore, we study and present an appropriate metric or cost computation routing of ARLB for recently proposed ZRP over ad-hoc network environment.

  • PDF

An Optimal Selection of Embedded Platform for Specific Applications (특정목적 수행을 위한 임베디드 시스템 플랫폼의 최적 선택)

  • Moon, Ho-Sun;Kim, Yong-Deak
    • 전자공학회논문지 IE
    • /
    • v.47 no.1
    • /
    • pp.48-55
    • /
    • 2010
  • The goal of this paper is to determine optimal hardware platform for specific applications. In order to develop an understanding of how select the optimal platform, we focus upon the real-time embedded vehicle system for processing forward image and sound. In this paper we propose to measure parameters such as instructions, execution cycle, required memory size for program and data by using ARMulator. We have measured three types of processor cores: ARM7, ARM9 and ARM10. The results of the study indicated that the proposed methods could measure the minimal requirements of hardware platform for specific applications. By defining lower limit of hardware specifications in embedded systems, we can minimize expenses with suitable system performance without implementing the system.

A Freezing Method for Concurrence Control in Secure Real-Time Database Systems (실시간 보안 데이타베이스 시스템에서 병행수행 제어를 위한 얼림 기법)

  • Park, Chan-Jung;Han, Hee-Jun;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.29 no.3
    • /
    • pp.230-245
    • /
    • 2002
  • Database systems for real-time applications must satisfy timing constraints associated with transactions. Typically, a timing constraint is expressed in the form of a deadline and is represented as a priority to be used by schedulers. Recently, security has become another important issue in many real-time applications. In many systems, sensitive information is shared by multiple users with different levees of security clearance. As more advanced database systems are being used in applications that need to support timeliness while managing sensitive information, there is an urgent need to develop concurrency control protocols in transaction management that satisfy both timing and security requirements. In this paper, we propose two concurrence control protocols that ensure both security and real-time requirements. The proposed protocols are primarily based on multiversion locking. However, in order to satisfy timing constraint and security requirements, a new method, called the FREEZE, is proposed. In addition, we show that our protocols work correctly and they provide a higher degree of concurrency than existing multiversion protocols. We Present several examples to illustrate the behavior of our protocols, along with performance comparisons with other protocols. The simulation results show that the proposed protocols can achieve significant performance improvement.

Development of a Novel Direct-Drive Tubular Linear Brushless Permanent-Magnet Motor

  • Kim, Won-jong;Bryan C. Murphy
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.279-288
    • /
    • 2004
  • This paper presents a novel design for a tubular linear brushless permanent-magnet motor. In this design, the magnets in the moving part are oriented in an NS-NS―SN-SN fashion which leads to higher magnetic force near the like-pole region. An analytical methodology to calculate the motor force and to size the actuator was developed. The linear motor is operated in conjunction with a position sensor, three power amplifiers, and a controller to form a complete solution for controlled precision actuation. Real-time digital controllers enhanced the dynamic performance of the motor, and gain scheduling reduced the effects of a nonlinear dead band. In its current state, the motor has a rise time of 30 ms, a settling time of 60 ms, and 25% overshoot to a 5-mm step command. The motor has a maximum speed of 1.5 m/s and acceleration up to 10 g. It has a 10-cm travel range and 26-N maximum pull-out force. The compact size of the motor suggests it could be used in robotic applications requiring moderate force and precision, such as robotic-gripper positioning or actuation. The moving part of the motor can extend significantly beyond its fixed support base. This reaching ability makes it useful in applications requiring a small, direct-drive actuator, which is required to extend into a spatially constrained environment.

Underwater 3D Reconstruction for Underwater Construction Robot Based on 2D Multibeam Imaging Sonar

  • Song, Young-eun;Choi, Seung-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.227-233
    • /
    • 2016
  • This paper presents an underwater structure 3D reconstruction method using a 2D multibeam imaging sonar. Compared with other underwater environmental recognition sensors, the 2D multibeam imaging sonar offers high resolution images in water with a high turbidity level by showing the reflection intensity data in real-time. With such advantages, almost all underwater applications, including ROVs, have applied this 2D multibeam imaging sonar. However, the elevation data are missing in sonar images, which causes difficulties with correctly understanding the underwater topography. To solve this problem, this paper concentrates on the physical relationship between the sonar image and the scene topography to find the elevation information. First, the modeling of the sonar reflection intensity data is studied using the distances and angles of the sonar beams and underwater objects. Second, the elevation data are determined based on parameters like the reflection intensity and shadow length. Then, the elevation information is applied to the 3D underwater reconstruction. This paper evaluates the presented real-time 3D reconstruction method using real underwater environments. Experimental results are shown to appraise the performance of the method. Additionally, with the utilization of ROVs, the contour and texture image mapping results from the obtained 3D reconstruction results are presented as applications.

Generating Artificial Winds for Real-time Applications (실시간 응용을 위한 인위적인 바람의 생성)

  • Lee, Nam-Kyung;Baek, Nak-Hoon;Lee, Jong-Won;Ryu, Kwan-Woo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.8
    • /
    • pp.701-709
    • /
    • 2000
  • Real world wind can be classified into two categories: natural wind and artificial wind. Artificial wind can be generated by human beings, air conditioners, electric fans, etc. In this paper, a model for artificial wind is presented. We also present methods to efficiently calculate the forces applied to the objects under influence of the artificial wind. Our model is designed for real-time applications such as virtual environments. A general wind generating system can be established through integrating our model with previous wind models those are concentrated on the natural wind generation.

  • PDF

Performance Analysis of Modified TCP/IP for Realtime Control Data Transmission over IEEE-1394 Network (실시간 제어 데이터통신을 위한 IEEE-1394용 수정 TCP/IP의 성능분석)

  • 윤기중;박재현;염복진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.197-203
    • /
    • 2004
  • A real-time network in a distributed control system plays an important role for the reliable data transmission. Compared to the field-buses used in the past, TCP/IP protocol on the top of Ethered provides a compatibility between applications as well as an economical method to develop softwares. This paper proposes a modified TCP/IP structure for IEEE-1394 network, with which asynchronous and isochronous data transmission is selectively used for the real-time data transmission in a distributed control system. This paper also shows the performance of the proposed protocol by experiments.

Digital Gray-Scale/Color Image-Segmentation Architecture for Cell-Network-Based Real-Time Applications

  • Koide, Tetsushi;Morimoto, Takashi;Harada, Youmei;Mattausch, Jurgen Hans
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.670-673
    • /
    • 2002
  • This paper proposes a digital algorithm for gray-scale/color image segmentation of real-time video signals and a cell-network-based implementation architecture in state-of-the-art CMOS technology. Through extrapolation of design and simulation results we predict that about 300$\times$300 pixels can be integrated on a chip at 100nm CMOS technology, realizing very high-speed segmentation at about 1600sec per color image. Consequently real-time color-video segmentation will become possible in near future.

  • PDF

Electric-Thermal Photovoltaic Model Validation Using Real-Time Simulations (Real-Time 시뮬레이션을 이용한 전기-열 PV 모델링 입증)

  • Mai, Xuan Hung;Kim, Katherine A.
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.357-358
    • /
    • 2016
  • This paper presents a dynamic, electric-thermal model for a photovoltaic (PV) cell that combines electrical and thermal parameters. In this model, the irradiance and ambient temperature are used to calculate the PV cell temperature based on a five-layer thermal model. The cell temperature is then used in the electrical model to accurately adjust the PV cell output electrical characteristics and power. A custom experimental setup was built to test and verify the electrical and thermal characteristics of the PV cell and its surrounding layers. The electric-thermal model is validated using experimental data in realistic scenarios. This PV model can be scaled up and used to simulate PV systems in wide variety of applications, extreme environmental conditions, and fault conditions in real-time.

  • PDF