• Title/Summary/Keyword: Real-time analysis system

Search Result 3,102, Processing Time 0.03 seconds

Realization of a New PWM Inverter Using Walsh Series (왈쉬 급수를 이용한 새로운 PWM 인버터의 구현)

  • Joe, Jun-Ik;Chon, Byoung-Sil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.124-129
    • /
    • 1990
  • This paper describes a new method to eliminate some selected harmonics (5,7,11) in PWM waveforms using Walsh and related orthogonal functions. Previous analyses of PWM waveforms are based on the nonlinear equations requiring iterative solution methods which are not practical in real-time systems. In addition, synthesis of low harmonics waveform at high power system is not easy to implement with power electronic hardware. The goal of this paper is to achieve the harmonics elimination in a PWM waveform by replacing the nonlinear equations in Fourier analysis with linear algebraic equations resulting from the use of orthogonal Walsh equation. This paper also describes how to synthesize low ordered harmonic waveforms with practical power electronic hardware. Walsh and Radmacher functions are easily manipulated by Harmuth's array generator, and those algorithms are accurate, computationally efficient and faster than algorithm based on Fourier analysis. In addition, this method is simulated to synthesize periodic PWM waveforms. From the experi-mental results, it is shown that single-phase PWM waveform are identified with the proposed method. And these methods are also extended to three-phase PWM waveforms in this paper.

  • PDF

NoC Energy Measurement and Analysis with a Cycle-accurate Energy Measurement Tool for Virtex-II FPGAs (네트워크-온-칩 설계의 전력 소모 분석을 위한 Virtex-II FPGA의 싸이클별 전력 소모 측정 도구 개발)

  • Lee, Hyung-Gyu;Chang, Nae-Hyuck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.86-94
    • /
    • 2007
  • The NoC (network-on-chip) approach is a promising solution to the increasing complexity of on-chip communication problems because of its high scalability. But, NoC applications generally consume a lot of power, because they require a large design space to accommodate many parallel IPs and network communication channels. It is not easy to analyze the power consumption of NoC applications with conventional simulation methods using simple power models. In addition, there are also many limitations in using sophisticated simulation models because they require long execution time and large efforts. In this paper, we apply a cycle-accurate energy measurement technique and tool to the FPGA prototypes, which are generally used to verify the correctness of SoC designs, as a practical indication of the power consumption of real NoC applications. An NoC-based JPEG encoder implementation is used as a case study to demonstrate the effectiveness of our approach.

Detection Method of Distributed Denial-of-Service Flooding Attacks Using Analysis of Flow Information (플로우 분석을 이용한 분산 서비스 거부 공격 탐지 방법)

  • Jun, Jae-Hyun;Kim, Min-Jun;Cho, Jeong-Hyun;Ahn, Cheol-Woong;Kim, Sung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.203-209
    • /
    • 2014
  • Today, Distributed denial of service (DDoS) attack present a very serious threat to the stability of the internet. The DDoS attack, which is consuming all of the computing or communication resources necessary for the service, is known very difficult to protect. The DDoS attack usually transmits heavy traffic data to networks or servers and they cannot handle the normal service requests because of running out of resources. It is very hard to prevent the DDoS attack. Therefore, an intrusion detection system on large network is need to efficient real-time detection. In this paper, we propose the detection mechanism using analysis of flow information against DDoS attacks in order to guarantee the transmission of normal traffic and prevent the flood of abnormal traffic. The OPNET simulation results show that our ideas can provide enough services in DDoS attack.

Effects of gamma-aminobutyric acid and piperine on gene regulation in pig kidney epithelial cell lines

  • Shin, Juhyun;Lee, Yoon-Mi;Oh, Jeongheon;Jung, Seunghwa;Oh, Jae-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1497-1506
    • /
    • 2020
  • Objective: Gamma-aminobutyric acid (GABA) and piperine (PIP) are both nutritional supplements with potential use in animal diets. The purpose of this study is to investigate the effect of GABA and/or PIP treatment on the gene expression pattern of a pig kidney epithelial cell line. Methods: LLCPK1 cells were treated with GABA, PIP, or both, and then the gene expression pattern was analyzed using microarray. Gene ontology analysis was done using GeneOntology (Geneontology.org), and validation was performed using quantitative real-time polymerase chain reaction. Results: Gene ontology enrichment analysis was used to identify key pathway(s) of genes whose expression levels were regulated by these treatments. Microarray results showed that GABA had a positive effect on the transcription of genes related to regulation of erythrocyte differentiation and that GABA and PIP in combination had a synergistic effect on genes related to immune systems and processes. Furthermore, we found that effects of GABA and/or PIP on these selected genes were controlled by JNK/p38 MAPK pathway. Conclusion: These results can improve our understanding of mechanisms involved in the effect of GABA and/or PIP treatment on pig kidney epithelial cells. They can also help us evaluate their potential as a clinical diagnosis and treatment.

A Simple Multispectral Imaging Algorithm for Detection of Defects on Red Delicious Apples

  • Lee, Hoyoung;Yang, Chun-Chieh;Kim, Moon S.;Lim, Jongguk;Cho, Byoung-Kwan;Lefcourt, Alan;Chao, Kuanglin;Everard, Colm D.
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • Purpose: A multispectral algorithm for detection and differentiation of defective (defects on apple skin) and normal Red Delicious apples was developed from analysis of a series of hyperspectral line-scan images. Methods: A fast line-scan hyperspectral imaging system mounted on a conventional apple sorting machine was used to capture hyperspectral images of apples moving approximately 4 apples per second on a conveyor belt. The detection algorithm included an apple segmentation method and a threshold function, and was developed using three wavebands at 676 nm, 714 nm and 779 nm. The algorithm was executed on line-by-line image analysis, simulating online real-time line-scan imaging inspection during fruit processing. Results: The rapid multispectral algorithm detected over 95% of defective apples and 91% of normal apples investigated. Conclusions: The multispectral defect detection algorithm can potentially be used in commercial apple processing lines.

Space Weather Research using GPS Radio Occultation Soundings (GPS 전파엄폐 탐측자료의 우주기상 활용방안)

  • Shin, Dae-Yun;Manandhar, Dinesh;Lee, Jeong-Deok;Yi, Jong-Hyuk;Kim, Hae-Yeon;Lee, Yang-Won
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.14-22
    • /
    • 2013
  • GPS radio occultation is a remote sensing technique probing atmospheric properties based on the fact that GPS signal is refracted and delayed by atmosphere. The FORMOSAT-3/COSMIC mission jointly developed by the USA and Taiwan is providing about 2500 occultation soundings a day on the near real-time basis. The Korean KOMPSAT-5/AOPOD system is preparing to launch for monitoring troposphere and ionosphere using a dual frequency GPS receiver and the antenna for occultation data acquisition. In this paper, we examine the methods for signal processing and the geometry analysis for GPS radio occultation, and look into the retrieval techniques for the temperature and humidity of troposphere and the electron density and scintillation of ionosphere. Using these atmospheric properties, we aim to derive the strategies for applying GPS radio occultation to space weather, for example, ionospheric TEC(total electron content) analysis for earthquake monitoring and the Open API(application programming interface) development for more effective data service.

Land Use Feature Extraction and Sprawl Development Prediction from Quickbird Satellite Imagery Using Dempster-Shafer and Land Transformation Model

  • Saharkhiz, Maryam Adel;Pradhan, Biswajeet;Rizeei, Hossein Mojaddadi;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • Accurate knowledge of land use/land cover (LULC) features and their relative changes over upon the time are essential for sustainable urban management. Urban sprawl growth has been always also a worldwide concern that needs to carefully monitor particularly in a developing country where unplanned building constriction has been expanding at a high rate. Recently, remotely sensed imageries with a very high spatial/spectral resolution and state of the art machine learning approaches sent the urban classification and growth monitoring to a higher level. In this research, we classified the Quickbird satellite imagery by object-based image analysis of Dempster-Shafer (OBIA-DS) for the years of 2002 and 2015 at Karbala-Iraq. The real LULC changes including, residential sprawl expansion, amongst these years, were identified via change detection procedure. In accordance with extracted features of LULC and detected trend of urban pattern, the future LULC dynamic was simulated by using land transformation model (LTM) in geospatial information system (GIS) platform. Both classification and prediction stages were successfully validated using ground control points (GCPs) through accuracy assessment metric of Kappa coefficient that indicated 0.87 and 0.91 for 2002 and 2015 classification as well as 0.79 for prediction part. Detail results revealed a substantial growth in building over fifteen years that mostly replaced by agriculture and orchard field. The prediction scenario of LULC sprawl development for 2030 revealed a substantial decline in green and agriculture land as well as an extensive increment in build-up area especially at the countryside of the city without following the residential pattern standard. The proposed method helps urban decision-makers to identify the detail temporal-spatial growth pattern of highly populated cities like Karbala. Additionally, the results of this study can be considered as a probable future map in order to design enough future social services and amenities for the local inhabitants.

Acute Changes in Fascicle Behavior and Electromyographic Activity of the Medial Gastrocnemius during Walking in High Heeled Shoes

  • Kim, Jin-Sun;Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.135-142
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the acute effect of walking on high heels on the behavior of fascicle length and activation of the lower limb muscles. Methods: Twelve healthy inexperienced high heel wearers (age: $23.1{\pm}2.0yr$, height: $162.4{\pm}4.9cm$, weight: $54.4{\pm}8.5kg$) participated in this study. They walked in high heels (7 cm) and barefoot on a treadmill at their preferred speed. During the gait analysis, the lower limb joint kinematics were obtained using a motion analysis system. In addition, the changes in fascicle length and the level of activation of the medial gastrocnemius (MG) were simultaneously monitored using a real-time ultrasound imaging technique and surface electromyography, respectively. Results: The results of this study show that the MG fascicle operates at a significantly shorter length in high heel walking ($37.64{\pm}8.59mm$ to $43.99{\pm}8.66mm$) in comparison with barefoot walking ($48.26{\pm}9.02mm$ to $53.99{\pm}8.54mm$) (p < .05). In addition, the MG fascicle underwent lengthening during high heel walking with relatively low muscle activation while it remained isometric during barefoot walking with relatively high muscle activation. Conclusion: Wearing high heels alters the operating range of the MG fascicle length and the pattern of muscle activation, suggesting that prolonged wearing of high heels might induce structural alterations of the MG that, in turn, hinder normal functioning of the MG muscle during walking.

Development of Light Transmission Fluctuation for Particle Measurement in Solid-Gas Two Phase Flows

  • YANG, Bin;WANG, Zhan-ping;HE, Yuan;CAI, Xiao-Shu
    • Particle and aerosol research
    • /
    • v.12 no.1
    • /
    • pp.21-26
    • /
    • 2016
  • In order to realize In-line and convenient measurement for solid-gas two phase flows, Light Transmission Fluctuation (LTF) based on the random variation of transmitted light intensity, light scattering theory and cross-correlation method was presented for online measurement of particle size, concentration and velocity. The statistical relationship among transmitted light intensity, particle size and particle number in measurement zone was described by Beer-Lambert Law. Accordingly, the particle size and concentration were determined from the fluctuation signal of transmitted light intensity. Simultaneously, the particle velocity was calculated by cross-correlation analysis of two neighboring light beams. By considering the influence of concentration variation in industrial applications, the improved algorithm based on spectral analysis of transmitted light intensity was proposed to improve measurement accuracy and stability. Therefore, the online measurement system based on LTF was developed and applied to measure pulverized coal in power station and raw material in cement plant. The particle size, concentration and velocity of powder were monitored in real-time. It can provide important references for optimal control, energy saving and emission reduction of energy-intensive industries.

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.