• 제목/요약/키워드: Real-time TEM

검색결과 22건 처리시간 0.038초

초고전압 투과전자현미경의 원격시범운영 (First Remote Operation of the High Voltage Electron Microscope Newly Installed in KBSI)

  • 김영민;김진규;김윤중;허만회;권경훈
    • Applied Microscopy
    • /
    • 제34권1호
    • /
    • pp.13-21
    • /
    • 2004
  • 최근에 한국기초과학지원연구원에 설치된 초고전압 투과전자현미경은 원자분해능(점분해능 $1.2{\AA}$ 이하)의 구현과 고경사각 tilting 기능(${\pm}60^{\circ}$)에 의해 시편의 원자배열 구조를 3차원적으로 이미징할 수 있는 고성능 투과전자현미경이다. 이에 더하여 FasTEM이라는 원격 운용 시스템이 갖춰져 있어서 장비의 직접운용에 따른 여러 제약을 극복할 수 있게 한다. 초고전압 투과전자현미경의 원격운용을 위해 FasTEM 원격 시스템은 본원 초고전압 투과전자현미경에 설치된 Server 시스템과 서울분소에 설치된 Client 콘솔 시스템을 155 Mbps급 초고속 선도망 KOREN에 연결하여 구성하였으며 서울분소에서 대전본원의 초고전압 투과전자현미경을 운영하여 Au의 [001] 고분해능 영상을 얻는데 성공하였다. 초고전압 투과전자 현미경의 조사계 및 결상계 시스템 파라메타들의 조정, 각각의 detector 시스템 조정과 이미징, goniometer와 aperture 구동을 위한 motor-driven system들의 동작 등 초고전압 투과전자현미경의 원격 조정은 원격 작업자가 현장에 있는 것과 마찬가지로 실시간 운용이 가능하였다. 초고전압 투과전자현미경과 IT 기반기술의 접목에 의해 실현된 원격운용 기능은 국가적 공동연구시설에 대한 e-Science Grid를 구축하는데 중요한 역할을 하리라 기대된다.

밀리미터 전자기파를 이용한 콘크리트 내부 자가치유 캡슐의 위치 측정을 위한 3D 프린팅 자가치유 캡슐의 공진 주파수 분석 (Resonance frequency analysis of 3D printed self-healing capsules for localization of self-healing capsules inside concrete using millimeter wave length electromagnetic waves)

  • 임태욱;성호;이영준;호걸;김상유;정원석
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.243-244
    • /
    • 2022
  • In this paper, experiments were conducted on signal amplification of polymer capsules for application to Ground Penetrating Radar so as to enable real-time monitoring of polymer capsules inside concrete using the Morphology Dependent Resonance phenomenon. A TEM CELL and a vector network analyzer were used to analyze the difference in resonance frequency depending on the material of the sphere and the presence or absence of fracture. In order to manufacture a capsule of a size that can be measured using millimeter waves used in GPR, we manufactured a capsule with a 3D printer and analyzed the effects of the presence or absence of coating and the size of the capsule on the resonance frequency. Resonant frequency or signal amplification is more affected by diameter than coating. The capsule showing the highest amplification is the resin-coated 50 mm diameter capsule with a 316-fold increase and the lowest capsule is the uncoated 10 mm diameter capsule with a signal amplification of 11.9 times. These results demonstrate the potential of GPR to measure the position and state of self-healing capsules, which are small-sized polymers, in real time using millimeter waves.

  • PDF

자연발생석면지역의 토양 내 석면함유율에 따른 비산석면 농도평가 - 활동근거시료채취방법(ABS)과 실시간 섬유 측정 장치(F-1 fiber monitor) 결과 비교 - (Comparison of Airborne Asbestos Concentrations from Soils in Naturally Occurring Asbestos(NOA) Areas - Activity Based Sampling(ABS) vs. Real-time Asbestos Fiber Monitor(F-1 fiber monitor) -)

  • 장광명;박경훈;최성원;김현욱
    • 한국산업보건학회지
    • /
    • 제27권3호
    • /
    • pp.245-256
    • /
    • 2017
  • Objectives: The present study is aimed at performing real-time measurement of fibrous materials using an F-1 fiber monitor, investigating the correlations between the measurements and environmental conditions, and assessing the feasibility of the use of the monitor in actual exposure assessments based on the accuracy and reliability of the device. Methods: Asbestos specimens with a fixed asbestos content were dispersed in a chamber and collected with a particle measuring test device. Measurements obtained by the existing PCM method, and with the F-1 fiber monitor were compared. In addition, concentrations of asbestos fibers obtained by the PCM method, the TEM method, and the F-1 fiber monitor were compared with that of specific ABS scenarios in NOA regions. Correlations of asbestos contents in soil and weather conditions with each method of measurement were analyzed. Results: Laboratory results showed that levels of asbestos fibers measured with each method increased as fiber contents in soil increased. In the accuracy and reproducibility assessment, no significant differences were found between the different methods of measurement. On-site assessment results showed positive correlations among the methods, and these correlations were less significant compared with what was shown by the laboratory results. Levels of asbestos fibers increased as asbestos contents in soil increased, and as temperature increased. Levels of asbestos fibers decreased as humidity increased, and wind speed did not significantly affect the extent to which asbestos fibers were scattered. Conclusions: While it would be premature to replace existing methods with the use of F-1 fiber monitors in real sites based on the results of this study, the monitor may be useful in the screening of the sites, which assesses hazard levels in different regions. Replacement of existing methods with the use of F-1 fiber monitors may be possible after the limitations identified in this study are overcome, and additional assessment data are obtained and reviewed under different conditions to confirm the reliability of the monitor in future research. Obtained assessment results may be used as basic data for the assessment of asbestos hazard in NOA regions.

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • 오상호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

Method of Ga removal from a specimen on a microelectromechanical system-based chip for in-situ transmission electron microscopy

  • Yena Kwon;Byeong-Seon An;Yeon-Ju Shin;Cheol-Woong Yang
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.22.1-22.6
    • /
    • 2020
  • In-situ transmission electron microscopy (TEM) holders that employ a chip-type specimen stage have been widely utilized in recent years. The specimen on the microelectromechanical system (MEMS)-based chip is commonly prepared by focused ion beam (FIB) milling and ex-situ lift-out (EXLO). However, the FIB-milled thin-foil specimens are inevitably contaminated with Ga+ ions. When these specimens are heated for real time observation, the Ga+ ions influence the reaction or aggregate in the protection layer. An effective method of removing the Ga residue by Ar+ ion milling within FIB system was explored in this study. However, the Ga residue remained in the thin-foil specimen that was extracted by EXLO from the trench after the conduct of Ar+ ion milling. To address this drawback, the thin-foil specimen was attached to an FIB lift-out grid, subjected to Ar+ ion milling, and subsequently transferred to an MEMS-based chip by EXLO. The removal of the Ga residue was confirmed by energy dispersive spectroscopy.

Induction of DNA Damage in L5178Y Cells Treated with Gold Nanoparticle

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Song, Hyun-A;Jeong, Jin-Young;Lim, Yong-Taik;Chung, Bong-Hyun;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • 제17권1호
    • /
    • pp.92-97
    • /
    • 2009
  • As nanomaterials might enter into cells and have high reactivity with intracellular structures, it is necessary to assay possible genotoxic risk of them. One of these approaches, we investigated possible genotoxic potential of gold nanoparticle (AuNP) using L5178Y cells. Four different sizes of AuNP (4, 15, 100 or 200 nm) were synthesized and the sizes and structures of AuNP were analyzed using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and stability was analyzed by a UV/Vis. Spectrophotometer. Cytotoxicity was assessed by direct cell counting, and cellular location was detected by dark field microscope at 6, 24 and 48 h after treatment of AuNP. Comet assay was conducted to examine DNA damage and tumor necrosis factor (TNF)-${\alpha}$ mRNA level was assay by real-time reverse transcription polymerase chain reaction. Synthetic AuNP (4, 50, 100 and 200 nm size) had constant characteristics and stability confirmed by TEM, SEM and spectrophotometer for 10 days, respectively. Dark field microscope revealed the location of AuNP in the cytoplasm at 6, 24 and 48 h. Treatment of 4 nm AuNP induced dose and time dependent cytotoxicity, while other sizes of AuNP did not. However, Comet assay represented that treatment of 100 nm and 200 nm AuNP significantly increased DNA damage compared to vehicle control (p <0.01). Treatment of 100 nm and 200 nm AuNP significantly increased TNF-${\alpha}$ mRNA expression compared to vehicle control (p<0.05, p<0.01, respectively). Taken together, AuNP induced DNA damage in L5178Y cell, associated with induction of oxidative stress.

A Mathematical Approach to Allocate the Contributions by Applying UPFCs to Transmission System Usage

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.158-163
    • /
    • 2005
  • Competitive electricity markets necessitate equitable methods for allocating transmission usage in order to set transmission usage charges and congestion charges in an unbiased and an open-accessed basis. So in competitive markets it is usually necessary to trace the contribution of each participant to line usage, congestion charges and transmission losses, and then to calculate charges based on these contributions. A UPFC offers flexible power system control, and has the powerful advantage of providing, simultaneously and independently, real-time control of voltage, impedance and phase angle, which are the basic power system parameters on which sys-tem performance depends. Therefore, UPFC can be used efficiently and flexibly to optimize line utilization and increase system capability and to enhance transmission stability and dampen system oscillations. In this paper, a mathematical approach to allocate the contributions of system users and UPFCs to transmission system usage is presented. The paper uses a dc-based load flow modeling of UPFC-inserted transmission lines in which the injection model of the UPFC is used. The relationships presented in the paper showed modified distribution factors that modeled impact of utilizing UPFCs on line flows and system usage. The derived relationships show how bus voltage angles are attributed to each of changes in generation, injections of UPFC, and changes in admittance matrix caused by inserting UPFCs in lines. The relationships derived are applied to two test systems. The results illustrate how transmission usage would be affected when UPFC is utilized. The relationships derived can be adopted for the purpose of allocating usage and payments to users of transmission network and owners of UPFCs used in the network. The relationships can be modified or extended for other control devices.

  • PDF

Green Synthesis of Multifunctional Carbon Nanodots and Their Applications as a Smart Nanothermometer and Cr(VI) Ions Sensor

  • Li, Lu;Shao, Congying;Wu, Qian;Wang, Yunjian;Liu, Mingzhu
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850147.1-1850147.14
    • /
    • 2018
  • In this work, water-soluble and blue-emitting carbon nanodots (CDs) were synthesized from apple peels for the first time via one-step hydrothermal method. The synthetic route is facile, green, economical and viable. The as-prepared CDs were characterized thoroughly by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR), X-ray photoelectron (XPS), fluorescence and UV-Vis absorption spectroscopy in terms of their morphology, surface functional groups and optical properties. The results show that these CDs possessed ultrasmall size, good dispersivity, and high tolerance to pH, ionic strength and continuous UV irradiation. Significantly, the CDs had fast and reversible response towards temperature, and the accurate linear relationship between fluorescence intensity and temperature was used to design a novel nanothermometer in a broad temperature range from 5 to $65^{\circ}C$ facilely. In addition, the fluorescence intensity of CDs was observed to be quenched immediately by Cr(VI) ions based on the inner filter effect. A low-cost Cr(VI) ions sensor was proposed employing CDs as fluorescent probe, and it displayed a wide linear range from 0.5 to $200{\mu}M$ with a detection limit of $0.73{\mu}M$. The practicability of the developed Cr(VI) sensor for real water sample assay was also validated with satisfactory recoveries.

Ni Nanoparticle Anchored on MWCNT as a Novel Electrochemical Sensor for Detection of Phenol

  • Wang, Yajing;Wang, Jiankang;Yao, Zhongping;Liu, Chenyu;Xie, Taiping;Deng, Qihuang;Jiang, Zhaohua
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850134.1-1850134.10
    • /
    • 2018
  • Increasing active sites and enhancing electric conductivity are critical factors to improve sensing performance toward phenol. Herein, Ni nanoparticle was successfully anchored on acidified multiwalled carbon nanotube (a-MWCNT) surface by electroless plating technique to avoid Ni nanoparticle agglomeration and guarantee high conductivity. The crystal structure, phase composition and surface morphology were characterized by XRD, SEM and TEM measurement. The as-prepared Ni/a-MWCNT nanohybrid was immobilized onto glassy carbon electrode (GCE) surface for constructing phenol sensor. The phenol sensing performance indicated that Ni/a-MWCNT/GCE exhibited an amazing detection performance with rapid response time of 4 s, a relatively wide detection range from 0.01 mM to 0.48 mM, a detection limit of $7.07{\mu}M$ and high sensitivity of $566.2{\mu}A\;mM^{-1}\;cm^{-2}$. The superior selectivity, reproducibility, stability and applicability in real sample of Ni/a-MWCNT/GCE endowed it with potential application in discharged wastewater.

Gene Silencing of β-catenin by RNAi Inhibits Proliferation of Human Esophageal Cancer Cells by Inducing G0/G1 Cell Cycle Arrest

  • Wang, Jin-Sheng;Ji, Ai-Fang;Wan, Hong-Jun;Lu, Ya-Li;Yang, Jian-Zhou;Ma, Li-Li;Wang, Yong-Jin;Wei, Wu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2527-2532
    • /
    • 2012
  • Objectives: The aim of the present study was to explore mechanisms underlying the effects of down-regulating ${\beta}$-catenin expression on esophageal carcinoma (EC) cells. Methods: Cell cycle distribution and apoptosis were determined using flow cytometry and annexin V apoptosis assay, respectively. Transmission electron microscopy (TEM) was used to examine changes in ultrastructure, while expression of cyclin D1 protein and mRNA was detected by western blot and real-time PCR. Proliferating cell nuclear antigen (PCNA) and extracellular signal-regulated kinase (ERK) 1-2 were evaluated by Western blot analysis. PCNA labeling index (LI) was determined by immunocytochemistry. Results: Compared with pGen-3-con transfected and Eca-109 cells, the percentage of G0/G1-phase pGen-3-CTNNB1 transfected cells was obviously increased (P<0.05), with no significant difference among the three groups with regard to apoptosis (P>0.05). pGen-3-CTNNB1 transfected cells exhibited obvious decrease in cyclin D1 mRNA and protein expression (P<0.05) and the ultrastructure of Eca-109 cells underwent a significant change after being transfected with pGen-3-CTNNB1, suggesting that down-regulating ${\beta}$-catenin expression can promote the differentiation and maturation. The expression of PCNA and the ERKI/2 phosphorylation state were also down-regulated in pGen-3-CTNNB1 transfected cells (P<0.05). At the same time, the PCNA labeling index was decreased accordingly (P<0.05). Conclusion: Inhibition of EC Eca-109 cellproliferation by down-regulating ${\beta}$-catenin expression could improve cell ultrastructure by mediating blockade in G0/G1 through inhibiting cyclin D1, PCNA and the MAPK pathway (p-ERK1/2).