• Title/Summary/Keyword: Real-time Routing

Search Result 282, Processing Time 0.033 seconds

A Hole Self-Organization Real-Time Routing Protocol for Irregular Wireless Sensor Networks (비정형적인 무선 센서 네트워크에서 음영지역 자가 구성 실시간 라우팅 프로토콜)

  • Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Yim, Yongbin;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.5
    • /
    • pp.281-290
    • /
    • 2014
  • The real-time data dissemination schemes exploit the spatiotemporal commuication approach which forwards data at the delivery speed calculated with the desired time deadline and the end-to-end distance in wireless sensor networks (WSNs). In practical environments, however, the performance of the real-time data dissemination might be degraded by additional and inevitable delay due to some holes. Namely, the holes lengthen the data delivery path and the spatiotemporal approach could not estimate a distance of the data delivery path. To deal with this, we propose A Hole Self-Organization Real-time Routing Protocol for Irregular Wireless Sensor Networks. In proposed protocol, nodes around holes could detect them at deploying phase. A hole is represented as a circle with center point and radius. This hole information is processed and provided as a form of location service. When a source queries a destination location, location provider replies certain points for avoiding holes as well as destination location. Thus, the source could set desired speed toward the destination via the points. Performance evaluation shows that provides better real-time service in practical environments.

A QoS Multicast Routing Optimization Algorithm Based on Genetic Algorithm

  • Sun Baolin;Li Layuan
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.116-122
    • /
    • 2006
  • Most of the multimedia applications require strict quality of service (QoS) guarantee during the communication between a single source and multiple destinations. This gives rise to the need for an efficient QoS multicast routing strategy. Determination of such QoS-based optimal multicast routes basically leads to a multi-objective optimization problem, which is computationally intractable in polynomial time due to the uncertainty of resources in Internet. This paper describes a network model for researching the routing problem and proposes a new multicast tree selection algorithm based on genetic algorithms to simultaneously optimize multiple QoS parameters. The paper mainly presents a QoS multicast routing algorithm based on genetic algorithm (QMRGA). The QMRGA can also optimize the network resources such as bandwidth and delay, and can converge to the optimal or near-optimal solution within few iterations, even for the networks environment with uncertain parameters. The incremental rate of computational cost can close to polynomial and is less than exponential rate. The performance measures of the QMRGA are evaluated using simulations. The simulation results show that this approach has fast convergence speed and high reliability. It can meet the real-time requirement in multimedia communication networks.

Real-Time Flood Forecasting Using Rainfall-Runoff Model(I) : Theory and Modeling (강우-유출모형을 이용한 실시간 홍수예측(I) : 이론과 모형화)

  • 정동국;이길성
    • Water for future
    • /
    • v.27 no.1
    • /
    • pp.89-99
    • /
    • 1994
  • Flood forecasting in Korea has been based on the off-line parameter estimation method. But recent flood forecasting studies explore on-line recursive parameter estimation algorithms. In this study, a simultaneous adaptive estimation of system states and parameters for rainfall-runoff model is investigated for on-line real-time flood forecasting and parameter estimation. The proposed flood routing system is composed of Flood forecasting in Korea has been based on the off-line parameter estimation method. But recent flood forecasting studies explore on-line recursive parameter estimation algorithms. In this study, a simultaneous adaptive estimation of system states and parameters for rainfall-runoff model is investigated for on-line real-time flood forecasting and parameter estimation. The proposed flood routing system is composed of ø-index in the assessment of effective rainfall and the cascade of nonlinear reservoirs accounting for translation effect in flood routing. To combine the flood routing model with a parameter estimation model, system states and parameters are treated with the extended state-space formulation. Generalized least squares and maximum a posterior estimation algorithms are comparatively examined as estimation techniques for the state-space model. The sensitivity analysis is to investigate the identifiability of the parameters. The index of sensitivity used in this study is the covariance matrix of the estimated parameters.-index in the assessment of effective rainfall and the cascade of nonlinear reservoirs accounting for translation effect in flood routing. To combine the flood routing model with a parameter estimation model, system states and parameters are treated with the extended state-space formulation. Generalized least squares and maximum a posterior estimation algorithms are comparatively examined as estimation techniques for the state-space model. The sensitivity analysis is to investigate the identifiability of the parameters. The index of sensitivity used in this study is the covariance matrix of the estimated parameters.

  • PDF

A New Dynamic Routing Algorithm for Multiple AGV Systems : Nonstop Preferential Detour Algorithm (다중무인운반차 시스템의 새로운 동적경로계획 알고리즘 : 비정지우선 우회 알고리즘)

  • Sin, Seong-Yeong;Jo, Gwang-Hyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.795-802
    • /
    • 2002
  • We present a new dynamic routing scheme for multiple autonomous guided vehicles (AGVs) systems. There have been so many results concerned with scheduling and routing of multiple AGV systems; however, most of them are only applicable to systems with a small number of AGVs under a low degree of concurrency. With an increased number of AGVs in recent applications, these AGV systems are faced with another problem that has never been occurred in a system with a small number AGVs. This is the stop propagation problem. That is, if a leading AGV stops then all the following AGVs must stop to avoid any collision. In order to resolve this problem, we propose a nonstop preferential detour (NPD) algorithm which is a new dynamic routing scheme employing an election algorithm. For real time computation, we introduce two stage control scheme and propose a new path searching scheme, k-via shortest path scheme for an efficient dynamic routing algorithm. Finally, the proposed new dynamic routing scheme is illustrated by an example.

A Study for Solving Multi-Depot Dial-a-Ride Problem Considering Soft Time Window (다수차고지와 예약시간 위반을 고려한 교통약자 차량 서비스에 대한 연구)

  • Kim, Taehyeong;Park, Bum-Jin;Kang, Weon-Eui
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.5
    • /
    • pp.70-77
    • /
    • 2012
  • Dial-a-ride is the most widely available transit service for disabled persons or seniors in the United States and Europe. This paper studies a static dial-a-ride problem considering multiple depots, heterogeneous vehicles, and soft time windows. In this paper, we apply a heuristic based on clustering first-routing second(HCR) to a real-world large dial-a-ride problem from Maryland Transit Administration(MTA). MTA's real operation is compared with the results of developed heuristic for 24 cases. The objective function of the proposed model is to minimize the total cost composed of the service provider's cost and the customers' inconvenience cost. For the comparison, the objective function values of HCR do not include waiting cost, delay cost, and excess ride cost. The objective function values from HCR are better than those from MTA's operation for all cases. This result shows that our heuristic method can make the real operation better and more efficient.

Flexible Intelligent Exit Sign Management of Cloud-Connected Buildings

  • Lee, Minwoo;Mariappan, Vinayagam;Lee, Junghoon;Cho, Juphil;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.58-63
    • /
    • 2017
  • Emergencies and disasters can happen any time without any warning, and things can change and escalate very quickly, and often it is swift and decisive actions that make all the difference. It is a responsibility of the building facility management to ensure that a proven evacuation plan in place to cover various worst scenario to handled automatically inside the facility. To mapping out optimal safe escape routes is a straightforward undertaking, but does not necessarily guarantee residents the highest level of protection. The emergency evacuation navigation approach is a state-of-the-art that designed to evacuate human livings during an emergencies based on real-time decisions using live sensory data with pre-defined optimum path finding algorithm. The poor decision on causalities and guidance may apparently end the evacuation process and cannot then be remedied. This paper propose a cloud connected emergency evacuation system model to react dynamically to changes in the environment in emergency for safest emergency evacuation using IoT based emergency exit sign system. In the previous researches shows that the performance of optimal routing algorithms for evacuation purposes are more sensitive to the initial distribution of evacuees, the occupancy levels, and the type and level of emergency situations. The heuristic-based evacuees routing algorithms have a problem with the choice of certain parameters which causes evacuation process in real-time. Therefore, this paper proposes an evacuee routing algorithm that optimizes evacuation by making using high computational power of cloud servers. The proposed algorithm is evaluated via a cloud-based simulator with different "simulated casualties" are then re-routed using a Dijkstra's algorithm to obtain new safe emergency evacuation paths against guiding evacuees with a predetermined routing algorithm for them to emergency exits. The performance of proposed approach can be iterated as long as corrective action is still possible and give safe evacuation paths and dynamically configure the emergency exit signs to react for real-time instantaneous safe evacuation guidance.

Routing and Collision Avoidance of Linear Motor based Transfer Systems using Online Dynamic Programming

  • Kim, Jeong-Tae;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.30 no.9
    • /
    • pp.773-777
    • /
    • 2006
  • Significant increase of container flows in the marine terminals requires more efficient port equipments such as logistic and transfer systems. This paper presents collision avoidance and routing approach based on dynamic programming (DP) algorithm for a linear motor based shuttle car which is considered as a new transfer system in the port terminals. Most of routing problems are focused on automatic guided vehicle (AGV) systems, but its solutions are hardly utilized for LM based shuttle cars since both are mechanically different. Our proposed DP is implemented for real-time searching of an optimal path for each shuttle car in the Agile port terminal located at California in USA.

An Improved Distributed Algorithm for Delay-Constrained Unicast Routing (개선된 분산 Delay-Constrained Unicast Routing 알고리듬)

  • Zhou, Xiao-Zheng;Suh, Hee-Jong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.109-112
    • /
    • 2005
  • In this paper, we propose an improved delay-constrained unicast routing (I-DCUR) algorithm for real-time networks which is based on the delay-constrained unicast routing (DCUR) algorithm. Our I-DCUR algorithm is quite different from DCUR algorithm, because the node will choose the link between the active node and the previous node, and it will replace the original loop path when it detects a loop. Thus, firstly consider to choose the link between the active node and the previous node to replace the original loop path when a node detects a loop. So our algorithm can make the construction of path more efficiently, as compared to DCUR algorithm. We could see that the performance of I-DCUR algorithm is much better than DCUR algorithm in the experimental results. There were over 40% improvement in 100 nodes, 60% in 200 nodes, and 9% reduction of costs.

  • PDF

SDN-based wireless body area network routing algorithm for healthcare architecture

  • Cicioglu, Murtaza;Calhan, Ali
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.452-464
    • /
    • 2019
  • The use of wireless body area networks (WBANs) in healthcare applications has made it convenient to monitor both health personnel and patient status continuously in real time through wearable wireless sensor nodes. However, the heterogeneous and complex network structure of WBANs has some disadvantages in terms of control and management. The software-defined network (SDN) approach is a promising technology that defines a new design and management approach for network communications. In order to create more flexible and dynamic network structures in WBANs, this study uses the SDN approach. For this, a WBAN architecture based on the SDN approach with a new energy-aware routing algorithm for healthcare architecture is proposed. To develop a more flexible architecture, a controller that manages all HUBs is designed. The proposed architecture is modeled using the Riverbed Modeler software for performance analysis. The simulation results show that the SDN-based structure meets the service quality requirements and shows superior performance in terms of energy consumption, throughput, successful transmission rate, and delay parameters according to the traditional routing approach.

EERA: ENHANCED EFFICIENT ROUTING ALGORITHM FOR MOBILE SENSOR NETWORK

  • Hemalatha, S;Raj, E.George Dharma Prakash
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.389-395
    • /
    • 2022
  • A Mobile Sensor Network is widely used in real time applications. A critical need in Mobile Sensor Network is to achieve energy efficiency during routing as the sensor nodes have scarce energy resource. The nodes' mobility in MWSN poses a challenge to design an energy efficient routing protocol. Clustering helps to achieve energy efficiency by reducing the organization complexity overhead of the network which is proportional to the number of nodes in the network. This paper proposes"EERA: Energy Efficient Routing Algorithm for Mobile Sensor Network" is divided into five phases. 1, Cluster Formation 2.Cluster head and Transmission head selection 3.Path Establishment / Route discovery and 4,Data Transmission. Experimental Analysis has been done and is found that the proposed method performs better than the existing method with respect to four parameters.