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A QoS Multicast Routing Optimization Algorithm Based
on Genetic Algorithm |

Baolin Sun and Layuan Li

Abstract: Most of the multimedia applications require strict qual-
ity of service (QoS) guarantee during the communication between
a single source and multiple destinations. This gives rise to the
need for an efficient QoS multicast routing strategy. Determina-
tion of such QoS-based optimal multicast routes basically leads to
a multi-objective optimization problem, which is computationally
intractable in polynomial time due to the uncertainty of resources
in Internet. This paper describes a network model for researching
the routing problem and proposes a new multicast tree selection
algorithm based on genetic algorithms to simultaneously optimize
multiple QoS parameters. The paper mainly presents a QoS multi-
cast routing algorithm based on genetic algorithm (QMRGA). The
QMRGA can also optimize the network resources such as band-
width and delay, and can converge to the optimal or near-optimal
solution within few iterations, even for the networks environment
with uncertain parameters. The incremental rate of computational
cost can close to polynomial and is less than exponential rate. The
performance measures of the QMRGA are evaluated using simu-
lations. The simulation results show that this approach has fast
convergence speed and high reliability. It can meet the real-time
requirement in multimedia communication networks.

Index Terms: Genetic algorithm, Internet, multicast routing, qual-
ity of service (QoS), uncertain parameters.

I. INTRODUCTION

Multicast employs a tree structure in the network to efficiently
deliver the same data stream to a group of receivers. Tradition-
ally, research on Internet multicast has been centered on scala-
bility and efficiency. The deployment of high-speed networks
opens a new dimension of research, which is to provide quality
of service (QoS) such as guaranteed throughput for audio/video
streams. Itis technically a challenging and complicated problem
to deliver timely, smooth, synchronized multimedia information
over a decentralized, shared network environment, especially
one that was originally designed for best-effort traffic such as
the Internet [1]-[8]. The provision of QoS guarantees is of ut-
most importance for the development of the multicast services.
Multicast routing has continued to be a very important research
issue in the areas of networks and distributed systems. It attracts
the interests of many people.

QoS multicast routing relies on state parameters specifying
resource availability at network nodes or links, and uses them to
find paths with enough free resources [1]-[3], [7]-[12]. In turn,
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the successful routing of new flows together with the termina-
tion of existing ones, induce constant changes in the amount
of resources available. These must then be communicated back
to QoS multicast routing. Unfortunately, communicating such
changes in a timely fashion is expensive and, at times, not
even feasible [1]-[3], [7]-[12]. As a result, changes in resources
availability are usually communicated either infrequently or un-
certainly. There are two main components to the cost of timely
distribution of changes in network state: The number of entities
generating such updates and the frequency at which each entity
generates updates. The goal of QoS based multicast routing is
to search and construct a multicast tree that not only covers all
the group members but also meets their QoS requirements.

To control the protocol overhead and to limit it to a tolera-
ble level, large clamp-down timers are used to limit the rate of
updates. The accuracy of network state is also affected by, for
example, the scope of an update message and the types of value
advertised (exact state values or quantized values). There is a
fundamental trade-off between the certainty of state informa-
tion and the protocol message overhead. Moreover, in large and
dynamic networks, the growth in the state information makes
it practically impossible to maintain accurate knowledge about
all nodes and links. Instead, the state information is usually ag-
gregated in a certain hierarchical manner, and the aggregation
process inherently decreases the information accuracy and in-
troduces imprecision. The uncertain state information kept at
each node imposes difficulty in QoS provisioning. Guerin and
Orda [7] investigated the problem of QoS routing when the state
information is uncertain or inaccurate and expressed in some
probabilistic manner. They then proposed a distributed ticket-
based probing routing algorithm.

In recent years, some researchers have started using evolu-
tionary algorithms to find near-optimal solutions for different
Internet networking problems, like QoS routing [8]-[12]. More
recently, researches in determining QoS based multicast routes
clearly demonstrate the power of genetic algorithms to get a
near-optimal solution satisfying the QoS requirements in com-
putationally feasible time [9]-[11]. A little careful insight into
these above optimization schemes reveals that all of them suf-
fer from the same drawback: Multiple objectives are combined
to form a scalar single-objective function, usually through a lin-
ear combination (weighted sum) of multiple attributes. In these
cases, the solution not only becomes highly sensitive to the
weight vector but also demands the user to have certain knowl-
edge (e.g., priority of a particular objective, influence of a pa-
rameter over another, etc.) about the problem. Moreover, in case
of multi-objective optimization, a unique solution that optimizes
all the objectives simultaneously will rarely, if at all, exist in
practice. Conventional genetic algorithms are clearly unable to
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provide this flexibility to the user [10]. However, the genetic
algorithm (GA) can be readily modified to deal with multiple
objectives by incorporating the concept of Pareto domination in
its selection operation [13].

This paper focuses on determining multicast routes from a
source to a set of destinations with strict end-to-end delay re-
quirements and minimum bandwidth available. Though the path
determination problem with a single optimization parameter can
be solved in polynomial time, the uncertainty of precise val-
ues of multiple objective functions make the problem an NP-
hard [1]-[7]. The goal of this paper is to develop an algorithm
to find out QoS based multicast routes by simultaneously opti-
mizing end-to-end delay, bandwidth provisioning for guaranteed
QoS, and proper bandwidth utilization without combining them
into a single scalar optimization function.

The rest of the paper is organized as follows. Section II de-
scribes a network model. Section III presents the QMRGA.
Analysis of convergence and some simulation results are pro-
vided in Section IV. The paper concludes and future research in
Section V.

II. NETWORK MODEL

A network is usually represented as a weighted digraph G =
(N, E), where N denotes the set of nodes and F denotes the
set of communication links connecting the nodes. |N| and |E|
denote the number of nodes and links in the network, respec-
tively. Without loss of generality, only digraphs are considered
in which there exists at most one link between a pair of ordered
nodes [7]-{12]. We consider the multicast routing problem with
bandwidth and delay constraints from one source node to multi-

destination nodes. Let M = {ug, v, Uz, - -, um C N be aset
of form source to destination nodes of the multicast tree where
ng is source node, and U = {uy, ug, -, uy b be a set of desti-

nation nodes. Multicast tree T = (N7, Ep), where N C N,
E7 C E, there exists the path Pr(ng, d) from source node ng
to each destination node d € U in T' [1}-[3], [11].

Definition 1: The cost of multicast tree T is

C(T) =Y Cle).
ecEr

Definition 2: The bandwidth of multicast tree T is the min-
imum value of link bandwidth in the path from source node ng
to each destination node d € U, i.e.,

B(T) = min(B(e),e € Ep).

Definition 3: The delay of multicast tree T is the maximum
value of delay in the path from source node ng to each destina-
tionnode d € U, i.e.,

e€Pr(no,d)

D(T) = max( D(e),d e U).

Definition 4: The delay-jitter of multicast tree 1" is the max-
imum value of delay-jitter in the path from source node ngy to
each destination node j € U, i.e.,

>

e€Pr(ng,j)

J(T) = max( j(e),j € U).
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Definition 5: Assume the minimum bandwidth constraint of
multicast tree is B, the maximum delay constraint is D, and the
maximum delay-jitter constraint is .J, given a multicast demand
R, then, the problem of bandwidth-delay constrained multicast
routing is to find a multicast tree T, satisfying

(1) bandwidth constraint: B(T') > B,

(2) delay constraint: D(T) < D,

(3) delay-jitter constraint: J(7T") < J.

Suppose S(R) is the set and satisfies the conditions above,
then, the multicast tree 1" which we find is

C(T) = min(C(T}), Ty € S(R)).

HI. QMRGA

Genetic algorithms are based on the mechanics of natural
evolution. Throughout their artificial evolution, successive gen-
erations each consisting of a population of possible solutions,
called individuals (or chromosomes, or vectors of genes), search
for beneficial adaptations to solve the given problem. This
search is carried out by applying the Darwinian principles of
“reproduction and survival of the fittest” and the genetic opera-
tors of crossover and mutation which derive the new offspring
population from the current population. Reproduction involves
selecting, in proportion to its fitness level, an individual from
the current population and allowing it to survive by copying it
to the new population of individuals. The individual’s fitness
level is usually based on the cost function given by the prob-
lem (e.g., QoS multicast routing) under consideration. Then,
crossover and mutation are carried on two randomly chosen in-
dividuals of the current population creating two new offspring
individuals. Crossover involves swapping two randomly located
sub-chromosomes (within the same boundaries) of the two mat-
ing chromosomes. Mutation is applied to randomly selected
genes, where the values associated with such a gene is randomly
changed to another value within an allowed range. The offspring
population replaces the parent population, and the process is re-
peated for many generations. Typically, the best individual that
appeared in any generation of the run (i.e., best-so-far individ-
ual) is designated as the result produced by the genetic algo-
rithm.

A. Encoding Representation

In genetic algorithms, the critical problem is how to transform
the solution of the problems to the chromosomes which repre-
sents with encoding. The chromosomes of genetic algorithms
is composed of a series of integral quening and the encoding
method based on routing representation, which the most natural
and simplest representing method. Given a source node ng and
destination nodes set U = {uy, us, - -, Uy, }, a chromosome can
be represented by a string of integers with length m. The chro-
mosome of genetic algorithms is composed of a series of integral
queuing with length 12, and the gene of genetic algorithms is the
path in path set {P},---, P} - P!} [11] between ng and u;,
where Pi’ is the j-th path of destination node u;, and { denotes
the path number between ng and u;. Each chromosome in pop-
ulation denotes a multicast tree. This coding method was first
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proposed in [11] for the point-to-point routing problem. Ob-
viously, a chromosome represents a candidate solution for the
multicast routing problem since it guarantees a path between
the source node and any of the destination nodes. The major ad-
vantage of using the coding method of [11] is that given a chro-
mosome, the links of the multicast tree can be easily identified
and the path delay or bandwidth can be taken into consideration
through the proper selection of routes in routing tables. Since
there are so many paths between node ng and u;, such that the
encoding space of chromosomes possibly becomes larger, which
decreases the convergence of solution. Now for each destination
node d € U, by the k-th the shortest route algorithm, the encod-
ing space can be improved by finding out all routes that satisfy
bandwidth constraint from source node ng to destination node
d € U and composing routes set as candidate routes set of ge-
netic algorithm encoding space. Assume that U; is the set of
destination node u; which satisfies bandwidth constrained, then,

Ui:{Pil’...,Pz?',...,Pik}’ k<l

where Pij denotes the j-th route which satisfies bandwidth con-
straint of destination node u;. Choose arbitrarily a route from
each route set U; respectively, and compose the initial popu-
lation of chromosomes. Obviously, the multicast tree covered
all destination nodes, diminished bandwidth constraint in the al-
gorithm and optimized the performace of networks, decreased
searching space of the algorithm, diminished the probability
which dissatisfied, bandwidth constraint link in algorithm se-
lection, but satisfied the demand of bandwidth constraint.

Therefore, the chromosome of genetic algorithm can be made
of a series of integral queuing, namely, the encoding method
based on routing representation; this method decreased encod-
ing space, also omitted decoding operation. The relationship
among the chromosome, gene, and routing table is explained in
Fig. 1.

B. Fitness Sharing Function

The fitness function interprets the chromosome in terms of
physical representation and evaluates its fitness based on traits
of being desired in the solution. But, the fitness function must
accurately measure the quality of the chromosomes in the pop-
ulation. The definition of the fitness function, therefore, is very
critical [9]-[11].

Fitness function should describe the performance of the se-
lected individuals. The individual with good performance has
high fitness level, and the individual with bad performance has
low fitness level. Let links be service queues where packets to
be transmitted get serviced. In most cases, this service can be
assumed to follow Poisson distribution. The service time should
follow an exponential distribution. Let the delay for link [ be de-
noted by the variable d;, which is a random variable following
exponential distribution with parameter equal to A. So, the delay
over a path consisting of & links would be the sum of & indepen-
dent random variables all having the same exponential distribu-
tion and so would follow an Erlang-K distribution. From the
definition of Erlang- K distribution, we get that the probability
that the delay d, over a path P of length £ is less than £ is given
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Fig. 1. Representation of chromosomes.

by the following equation [10],
AEpk—1g—At

Pr(d, <t) = ————
wdp <) = =
From the classical probability theory, we can say that the
probability that the delay d of the selected multicast tree 1" will
meet the specific delay constraint can be obtained by taking the
product of delay over individual paths in that multicast tree [10],

Pr(dr <t) = J] Pr(d, < ).

peT

To find an optimal path, our objective is to maximize this
probability of satisfying delay requirements. The measure of
the bandwidth guarantee can be obtained by assuming a similar
model for the network links [10]. If the service rate or the trans-
mission rate, which is basically a measure of link bandwidth, is
assumed to follow a poisson distribution, the probability that a
link [ € E can provide a bandwidth of B is given by

ABe—A
Pr(B) = ——
zr( ) B!

‘We can now say that the probability with which the bandwidth
guarantee of B is satisfied for an entire multicast tree T' is given
by

Pr(B) = Pr(B).
>r(B) = [] Pr(B)

leT

The normal conjecture is that the path which is capable of pro-
viding with greatest residual bandwidth is the best choice. The
total residual bandwidth in the network after allocating band-
width for a multicast T'(s, M) is given by >, - (c; ~ by), where
¢ is the capacity of a link [ € E and b; is the bandwidth allo-
cated for all the paths in the multicast 7'(s, M), along the link
{. Obviously, b; is 0 if [ ¢ p where p € T. The fraction of total
bandwidth available as residual bandwidth is given as

Denler — bz)’

RT) = 2lenmCl
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Fig. 2. Overall procedure of the crossover.
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The fitness sharing function of QMRGA can be defined as
follows. fas)
M) — L4
f(z:) me
To incorporate this idea of fitness sharing, we compute the value
of niche count for every individual string present in the popula-

tion as
popsize

m; = Z SHlds1,s2]
=1

where d1 52 is the distance between individuals s1 and 52 and
SH{ds1,s2] is sharing function. For simplicity, triangular shar-
ing function has been used

. dsl,s2

Oshare
07 d> Tshare

) d< Tshare

1
SH[dsl,SQ] = {

where o are 18 the niche radius, and it is a good estimate of min-
imal separation expected between the goal of solutions. Individ-
uals within o, distance of each other degrade each other’s
fitness, as they are in the same niche [10].

The phenotypic distance between two strings is nothing but
the Eucledian distance between their different fitness values

dSl,Sz = \/(gdelays1,sz)2 + (Ubwsl,52)2 + (Ubitsl,sz)2

where Odelay,, ., = Pr(ds1 < t) — Pr(dsy < t), Opw,, ., =
Pry1(B) — Prsz(B), and oy, ., = R(s1) — R(s2). Simi-
larly, we compute the niche radius oghare as some fraction of the
maximum separation possible in the population [101, i.e.,

_ \/(UdelaYmax)Q + (Tbwaan)? T (Tbitnay )

Oshare =
4
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Fig. 3. Overall procedure of the mutation.

where Gdelay,a, = Prmax(d < t) = Pryin(d < t), 0pw,.., =
Prmax(B> - Prmin(B), and Obitmax — Rmax — Ruin.

C. Crossover and Mutation Operations

As the algorithm executes, at every iteration we get a set
of non-dominated strings whose fitness values represent the
Pareto-optimal solutions for that iteration. The crossover and
mutation operations are the same as normal genetic algorithms.
But, it must be made sure that these operations must not pro-
duce any illegal paths. Crossover examines the current solu-
tions in order to find better ones [9]-[11], [13]-[15]. Physically,
crossover in the shortest path routing problem plays the role of
exchanging each partial-route of two chosen chromosomes in
such a manner that the offspring produced by the crossover rep-
resents only one route. The crossover between two dominant
parents chosen by the selection gives higher probability of pro-
ducing offspring having dominant traits. The population under-
goes mutation by an actual change or flipping of one of the genes
of the candidate chromosomes, which keeps away from local op-
tima [9]-[11], [13]-[15]. Physically, it generates an alternative
partial-route from the mutation node to the destination node in
the proposed GA. Topological information database is utilized
for the purpose. Of course, mutation may induce a subtle bias
for reasons indicated earlier.

But the mechanism of the crossover is not the same as that of
the conventional one-point crossover. In the proposed scheme,
two chromosomes chosen for crossover should have at least one
common gene (node), but there is no requirement that they be
located at the same locus. That is to say, the crossover does
not depend on the position of nodes in routing paths. Fig. 2
shows an example of the crossover procedure {15]. As shown in
Fig. 2, a set of pairs of nodes which are commonly included in
the two (chosen) chromosomes without positional consistency
are formed (i.c., (3,2) and (5,4)). Such pairs are also called “po-
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tential crossing sites.” Then, one pair (i.e., (3,2)) is randomly
chosen and the locus of each node becomes a crossing site of
each chromosome. The crossing points of two chromosomes
may be different from each other.

Fig. 3 shows the overall procedure of the mutation opera-
tion [15]. As can be seen from Fig. 3, in order to perform a
mutation, a gene (i.e., node ns) is randomly selected from the
chosen chromosome (mutation point). One of the nodes, con-
nected directly to the mutation point, is chosen randomly as the
first node of the alternative partial-route.

Both the crossover and mutation operations can only be per-
formed at the end of an existing path. To give an equal prob-
ability to all such possible crossover and mutation points, we
randomly select one such point. The crossover operation is per-
formed by swapping the portion of the two consecutive chromo-
somes after the particular selected point. In case of mutation,
we just replace the part of the chromosome after the mutation
point by a corresponding part of any other valid chromosome.
To combine the good strings and simultaneously preserve the
effective ones we have taken the probability of cross over as 0.4
and that of mutation as 0.02 [11], [13], [14].

IV. ANALYSIS OF CONVERGENCE AND
SIMULATIONS EXPERIMENTS

A. Analysis of Convergence

Theorem 1: The genetic algorithm proposed in this paper
converges to the global optimal solution.

Proof: The genetic algorithm has following merits: (1)
Changeable length chromosome encoding method based on
routing expression is used; (2) crossover probability between
(0,1); (3) mutation probability between (0,1), randomly choos-
ing some individuals from the population with championship se-
lection method; (4) the individuals which has higher fitness level
in the population, caused these individuals to reproduce rapidly
in population, easily produce convergence and the random se-
lection which maybe tend to purity in evolution process, and
make it difficult to'find the global optimal solution problem. Ac-
cording to the merits about championship selection, changeable
length chromosomes, crossover and mutation operations, etc. in
literature [11], [13], [14]. the genetic algorithm can converge to
the global optimal solution. O

B. Simulation Experiments

Simulation experiments are performed over a network of 25
nodes, consider a link from ¢ to 7 that has a QoS descriptor
denoted as (d, 7,b,¢), where d is delay, j is delay jitter, b is
bandwidth, and c is link cost. In these simulation experiments,
the source node is node 0, and the number of multicast des-
tination nodes being {4,9,14,19,24}. When delay constraint
D = 30, delay jitter constraint J = 40, and bandwidth con-
straint B = 50, Fig. 5(a) shows the multicast tree found by
the algorithm for the indicated from source to destination set.
When delay constraint D = 20, delay jitter constraint J = 30,
and bandwidth constraint B = 40, Fig. 5(b) shows the multi-
cast tree found by the algorithm for the indicated from source to
destination set. The multicast QoS routing protocol designed by
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Fig. 4. Network topology structure.

us tries to maximize the probabilities of meeting end-to-end de-
lay, bandwidth requirement, and bandwidth utilization within a
few generations by building the Pareto optimal fronts. For sim-
plicity, we assume that QoS constraints of all leave nodes (end
nodes) are the same. Fig. 6 shows the varied curves of cost, de-
lay, and delay jitter of the multicast tree with the increasing ge-
netic algebra. From Fig. 6, we can see that QMRGA can quickly
break away from local optimal solution, and achieve global op-
timal solution by using the above instructional mutation opera-
tions. The reason is that it can maintain the solution’s variety
better, stronger capacity to globally search optimal solution and
convergence speed with niche genetic algorithms.

By repeating the simulation with increasing number of net-
work nodes, the efficiency of our algorithm can be observed. As
the network becomes highly condensed, our algorithm exhibits
a more linear and stable pattern than existing scalar optimiza-
tion algorithm. Fig. 7 shows the comparison of multicast tree
cost brought out by the three different algorithms of multicast
nodes of § with constraint delay of 50 ms. The figure indicates
the cost of the proposed algorithm to the optimal or near-optimal
multicast tree with in few iterations, the convergence speed are
better than that of [9], [11]. Fig. 8 details the cost compare of
multicast with nodes variety from 5 to 50, and delay constraints
of 50 ms. We can see that the algorithms proposed in this paper
is superior to that at [9], [11]. Fig. 9 shows the convergence of
the proposed algorithm with nodes from 5 to 50 and delay con-
straint of 50 ms is also superior to that of {9], [11] due to the
niche count technique applied to improve the searching speed of
global optimal solutions.

V. CONCLUSIONS AND FUTURE WORK

Multicast applications involving real-time audio and/or video
transmissions require strict QoS constraints (end-to-end delay
bound, delay jitter, and bandwidth availability) to be met by the
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Fig. 5. Genetic algorithm generate multicast tree: (a) D = 30, J = 40,
and B = 50, (b) D = 20, J = 30, and B = 40.
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network. To guarantee real-time delivery of multimedia packets,
a multicast channel needs to be established in advance by us-
ing a path selection policy that takes into account the QoS con-
straints. Among numerous advances in high-performance net-
working technology, the multicast routing with QoS constraints
has continued to be a very important research area. This pa-
per has discussed the multicast routing problem with multiple
QoS constraints in the networks environment with uncertain pa-
rameters. On-demand multicasting with guaranteed QoS is cur-
rently an active area of research. Researches in the QoS routings
are mostly done to optimize these QoS parameters by combin-
ing their different, conflicting characteristics into a single scalar
function with the real intuition and logic behind the combina-
tions being often fuzzy. The QMRGA can both optimize the
network resources such as bandwidth and delay and converge to
the optimal on near-optimal solution within few iteration, even
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Fig. 9. The nodes number of multicast the genetic iterations with variable
multicast nodes.

for the networks environment with uncertain parameters. The
incremental rate of computational cost can close to polynomial
and is less than exponential rate. Simulation results delincate
the efficiency, performance, and scalability of the protocol. Our
future interest is to mathematically model this protocol to ana-
lyze its performance and complexity. Finally, we think our work
will be helpful in solving some new problems in the domain of
QoS routing.

In a word, the deep research of QoS constraint multicast rout-
ing will increase the technology of high performance network
routing system, and it will be widely applied in video, multime-
dia broadcasting, and distance education fields, etc.
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