• Title/Summary/Keyword: Real-time Data Processing

Search Result 2,065, Processing Time 0.03 seconds

Spatio-temporal Query Processing Systems for Ubiquitous Environments

  • Kim, Jeong Joon;Kang, Jeong Jin;Rothwell, Edward J.;Lee, Ki Young
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.5 no.2
    • /
    • pp.1-4
    • /
    • 2013
  • With the recent development of the ubiquitous computing technology, there are increasing interest and research in technologies such as sensors and RFID related to information recognition and location positioning in various ubiquitous fields. Especially, RTLS (Real-Time Locating Services) dealing with spatio-temporal data is emerging as a promising technology. For these reasons, the ISO/IEC published RTLS standard specification for compatibility and interoperability in RTLS. Therefore, in this paper, we designed and implemented Spatio-temporal Query Processing Systems for efficiently managing and searching the incoming Spatio-temporal data stream of moving objects. Spatio-temporal Query Processing Systems's spatio-temporal middleware maintains interoperability among heterogeneous devices and guarantees data integrity in query processing through real time processing of unceasing spatio-temporal data streams and two way synchronization of spatio-temporal DBMSs. Web Server uses the SOAP(Simple Object Access Protocol) message between client and server for interoperability and translates client's SOAP message into CQL(Continuous Query Language) of the spatio-temporal middleware.

Design of Remote Management System for Smart Factory

  • Hwang, Heejoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.109-121
    • /
    • 2020
  • As a decrease in labor became a serious issue in the manufacturing industry, smart factory technology, which combines IT and the manufacturing business, began to attract attention as a solution. In this study, we have designed and implemented a real-time remote management system for smart factories, which is connected to an IoT sensor and gateway, for plastic manufacturing plants. By implementing the REST API in which an IoT sensor and smart gateway can communicate, the system enabled the data measured from the IoT sensor and equipment status data to the real-time monitoring system through the gateway. Also, a web-based management dashboard enabled remote monitoring and control of the equipment and raw material processing status. A comparative analysis experiment was conducted on the suggested system for the difference in processing speed based on equipment and measurement data number change. The experiment confirmed that saving equipment measurement data using cache mechanisim offered faster processing speed. Through the result our works can provide the basic framework to factory which need implement remote management system.

A Study on the Analysis of Performance for a Real-time Distributed Control System with Reliability (신뢰성 있는 실시간 분산제어 시스템의 성능분석에 관한 연구)

  • Kim, Nae-Jin;Park, In-Kap
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.270-277
    • /
    • 1998
  • As the network technologies advance, the control systems progress from a centralized architecture to a distributed one. However, these control systems were designed mostly based on the general-purpose operating systems(OS) and have many problems for assurance of a real-time property required for plant processing fields. Therefore, the control systems far a plant process upon real-time OS hare been increased gradually. In this paper, the real-time OS emphasizes on the realization of real-time processing capability, reliability of real-time response, and multi-processing functionality which are prerequisites for a distributed control system. And on the basis of this OS, the number of executable loop and logic, the functions of main plant processing, was analyzed and its validity was also evaluated. The system in this paper was designed not to effect on processing data while online, and the time spent on switching was measured.

  • PDF

Efficient Processing of Continuous Join Queries between a Data Stream and Multiple Relations for Real-Time Analysis of E-Commerce Data (전자상거래 데이터의 실시간 분석을 위한 데이터 스트림과 다수 릴레이션 간의 효율적인 연속 조인 처리 기법)

  • Kim, Haeri;Lee, Ki Yong
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.3
    • /
    • pp.159-175
    • /
    • 2013
  • Recently, as real-time availability of e-commerce data becomes possible, the requirement of real-time analysis of e-commerce increases significantly. In the real-time analysis of e-commerce data, it is very important to efficiently process continuous join queries between an e-commerce data stream and disk-based large relations. In this paper, we propose an efficient method for processing a continuous join query between an e-commerce data stream and multiple disk-based relations. The proposed method improves the service rate significantly, while reducing the amount of required memory substantially. Through analysis and various experiments, we show the efficiency of the proposed method compared with the previous one in terms of service rate and memory usage.

Machine Learning Data Analysis for Tool Wear Prediction in Core Multi Process Machining (코어 다중가공에서 공구마모 예측을 위한 기계학습 데이터 분석)

  • Choi, Sujin;Lee, Dongju;Hwang, Seungkuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.90-96
    • /
    • 2021
  • As real-time data of factories can be collected using various sensors, the adaptation of intelligent unmanned processing systems is spreading via the establishment of smart factories. In intelligent unmanned processing systems, data are collected in real time using sensors. The equipment is controlled by predicting future situations using the collected data. Particularly, a technology for the prediction of tool wear and for determining the exact timing of tool replacement is needed to prevent defected or unprocessed products due to tool breakage or tool wear. Directly measuring the tool wear in real time is difficult during the cutting process in milling. Therefore, tool wear should be predicted indirectly by analyzing the cutting load of the main spindle, current, vibration, noise, etc. In this study, data from the current and acceleration sensors; displacement data along the X, Y, and Z axes; tool wear value, and shape change data observed using Newroview were collected from the high-speed, two-edge, flat-end mill machining process of SKD11 steel. The support vector machine technique (machine learning technique) was applied to predict the amount of tool wear using the aforementioned data. Additionally, the prediction accuracies of all kernels were compared.

AI-BASED Monitoring Of New Plant Growth Management System Design

  • Seung-Ho Lee;Seung-Jung Shin
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.104-108
    • /
    • 2023
  • This paper deals with research on innovative systems using Python-based artificial intelligence technology in the field of plant growth monitoring. The importance of monitoring and analyzing the health status and growth environment of plants in real time contributes to improving the efficiency and quality of crop production. This paper proposes a method of processing and analyzing plant image data using computer vision and deep learning technologies. The system was implemented using Python language and the main deep learning framework, TensorFlow, PyTorch. A camera system that monitors plants in real time acquires image data and provides it as input to a deep neural network model. This model was used to determine the growth state of plants, the presence of pests, and nutritional status. The proposed system provides users with information on plant state changes in real time by providing monitoring results in the form of visual or notification. In addition, it is also used to predict future growth conditions or anomalies by building data analysis and prediction models based on the collected data. This paper is about the design and implementation of Python-based plant growth monitoring systems, data processing and analysis methods, and is expected to contribute to important research areas for improving plant production efficiency and reducing resource consumption.

Implementation of HMM-Based Speech Recognizer Using TMS320C6711 DSP

  • Bae Hyojoon;Jung Sungyun;Bae Keunsung
    • MALSORI
    • /
    • no.52
    • /
    • pp.111-120
    • /
    • 2004
  • This paper focuses on the DSP implementation of an HMM-based speech recognizer that can handle several hundred words of vocabulary size as well as speaker independency. First, we develop an HMM-based speech recognition system on the PC that operates on the frame basis with parallel processing of feature extraction and Viterbi decoding to make the processing delay as small as possible. Many techniques such as linear discriminant analysis, state-based Gaussian selection, and phonetic tied mixture model are employed for reduction of computational burden and memory size. The system is then properly optimized and compiled on the TMS320C6711 DSP for real-time operation. The implemented system uses 486kbytes of memory for data and acoustic models, and 24.5 kbytes for program code. Maximum required time of 29.2 ms for processing a frame of 32 ms of speech validates real-time operation of the implemented system.

  • PDF

Interfacing Module Design for Real Time Processing in Distributed Programmable Devices (분산된 단위 제어기기의 실시간 처리를 위한 접속 모듈의 설계)

  • 박남수;김정호;이상범
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.9-17
    • /
    • 1993
  • There are multiple controllers (PLC. LOOP Controller ) which are operating in product line and fabrication line. In those lines, it is necessary to connect various multilple controllers with integrity and coordination. The ways to connect those devices are specified by ISO network standard. In this paper, real time network is designed and implemented for factory automation at lowest possible cost that meets the small and middle size MINI-MAP specifications. Network performance is evaluated by simulation method on data link layer implemented interfacing modules has efficiency in throughput by reducing processing time. The system designed in this paper can be also applied to the field of distributed systems for real time processing.

  • PDF

Real-time and Parallel Semantic Translation Technique for Large-Scale Streaming Sensor Data in an IoT Environment (사물인터넷 환경에서 대용량 스트리밍 센서데이터의 실시간·병렬 시맨틱 변환 기법)

  • Kwon, SoonHyun;Park, Dongwan;Bang, Hyochan;Park, Youngtack
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.54-67
    • /
    • 2015
  • Nowadays, studies on the fusion of Semantic Web technologies are being carried out to promote the interoperability and value of sensor data in an IoT environment. To accomplish this, the semantic translation of sensor data is essential for convergence with service domain knowledge. The existing semantic translation technique, however, involves translating from static metadata into semantic data(RDF), and cannot properly process real-time and large-scale features in an IoT environment. Therefore, in this paper, we propose a technique for translating large-scale streaming sensor data generated in an IoT environment into semantic data, using real-time and parallel processing. In this technique, we define rules for semantic translation and store them in the semantic repository. The sensor data is translated in real-time with parallel processing using these pre-defined rules and an ontology-based semantic model. To improve the performance, we use the Apache Storm, a real-time big data analysis framework for parallel processing. The proposed technique was subjected to performance testing with the AWS observation data of the Meteorological Administration, which are large-scale streaming sensor data for demonstration purposes.

Efficiency Low-Power Signal Processing for Multi-Channel LiDAR Sensor-Based Vehicle Detection Platform (멀티채널 LiDAR 센서 기반 차량 검출 플랫폼을 위한 효율적인 저전력 신호처리 기법)

  • Chong, Taewon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.977-985
    • /
    • 2021
  • The LiDAR sensor is attracting attention as a key sensor for autonomous driving vehicle. LiDAR sensor provides measured three-dimensional lengths within range using LASER. However, as much data is provided to the external system, it is difficult to process such data in an external system or processor of the vehicle. To resolve these issues, we develop integrated processing system for LiDAR sensor. The system is configured that client receives data from LiDAR sensor and processes data, server gathers data from clients and transmits integrated data in real-time. The test was carried out to ensure real-time processing of the system by changing the data acquisition, processing method and process driving method of process. As a result of the experiment, when receiving data from four LiDAR sensors, client and server process was operated using background or multi-core processing, the system response time of each client was about 13.2 ms and the server was about 12.6 ms.