• Title/Summary/Keyword: Real-time Concurrency control

Search Result 35, Processing Time 0.028 seconds

An Efficient Real-Time Concrrency Control Algorithm using the Feasibility Test (실행가능성검사를 이용한 효율적인 실시간 동시성제어알고리즘)

  • Lee, Seok-Jae;Sin, Jae-Ryong;Song, Seok-Il;Yu, Jae-Su;Jo, Gi-Hyeong;Lee, Byeong-Yeop
    • Journal of KIISE:Databases
    • /
    • v.29 no.4
    • /
    • pp.297-310
    • /
    • 2002
  • The 2PL-HP(Two Phase Locking with High Priority) method has been used to guarantee preceding process of a high priority transaction(HPT) in real-time database systems. The method resolves a conflict through aborting or blocking of a low priority transaction(LPT). However, if HPT is eliminated in a system because of its deadline missing, an unnecessary aborting or blocking of LPT is occurred. Recently, to resolve the problem, a concurrency control algorithm using alternative version was proposed. However, the algorithm must always create the alternative version and needs an addtional technique to manage complex alternative versions. In this paper, we propose an efficient concurrency control algorithm that prevents needless wastes of resources and eliminates unnecessary aborting or blocking of LTP. And it is shown through the performance evaluation that the proposed concurrency control algorithm outperforms the existing concurrency control algorithm using alternative version.

A TMO Supporting Library and a BCC Scheduler for the Microscale Real-time OS, TMO-eCos) (초경량 실시간 운영체제 TMO-eCos를 위한 TMO 지원 라이브러리 및 BCC 스케줄러)

  • Ju, Hyun-Tae;Kim, Jung-Guk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.7
    • /
    • pp.505-509
    • /
    • 2009
  • It is the most important object of real-time computing to make real-time tasks keep their given time conditions. In this paper, we implemented BCC(Basic Concurrency Constraint) scheduler which is provided as an essential element of TMO(Time-triggered Message-triggered Object) model, and TMO Supporting Library that supports object-oriented design for TMO. BCC scheduler is a means to design timeliness-guaranteed computing, and it predicts the start of SpMs first, and then it makes the execution of SvMs deferred when it is predicted that any SpM begins to run currently. In this way, BCC is able to prevent collisions between SpM and SvM, and it gives higher priority to SpMs than SvMs.

Design of an Efficient Concurrency Control Algorithms for Real-time Database Systems (실시간 데이터베이스 시스템을 위한 효율적인 병행실행제어 알고리즘 설계)

  • Lee Seok-Jae;Park Sae-Mi;Kang Tae-ho;Yoo Jae-Soo
    • Journal of Internet Computing and Services
    • /
    • v.5 no.1
    • /
    • pp.67-84
    • /
    • 2004
  • Real-time database systems (RTDBS) are database systems whose transactions are associated with timing constraints such as deadlines. Therefore transaction needs to be completed by a certain deadline. Besides meeting timing constraints, a RTDBS needs to observe data consistency constraints as well. That is to say, unlike a conventional database system, whose main objective is to provide fast average response time, RTDBS may be evaluated based on how often transactions miss their deadline, the average lateness or tardiness of late transactions, the cost incurred in transactions missing their deadlines. Therefore, in RTDBS, transactions should be scheduled according to their criticalness and tightness of their deadlines, even If this means sacrificing fairness and system throughput, And It always must guarantee preceding process of the transaction with the higher priority. In this paper, we propose an efficient real-time scheduling algorithm (Multi-level EFDF) that alleviates problems of the existing real-time scheduling algorithms, a real-time concurrency control algorithm(2PL-FT) for firm and soft real-time transactions. And we compare the proposed 2PL F[ with AVCC in terms of the restarting ratio and the deadline missing ratio of transactions. We show through experiments that our algorithms achieve good performance over the other existing methods proposed earlier.

  • PDF

A Distributed Real-Time Concurrency Control Scheme using Transaction the Rise of Priority (트랜잭션 우선 순위 상승을 이용한 분산 실시간 병행수행제어 기법)

  • Lee, Jong-Sul;Shin, Jae-Ryong;Cho, Ki-Hyung;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.28 no.3
    • /
    • pp.484-493
    • /
    • 2001
  • As real-time database systems are extended to the distributed computing environment, the need to apply the existing real-time concurrency control schemes to the distributed computing environment has been made. In this paper we propose an efficient concurrency control scheme for distributed real-time database system. Our proposed scheme guarantees a transaction to commit at its maximum, reduces the restart of a transaction that is on the prepared commit phase, and minimizes the time of the lock holding. This is because it raises the priority of the transaction that is on the prepared commit phase in the distributed real-time computing environment. In addition, it reduces the waiting time of a transaction that owns borrowed data and improves the performance of the system, as a result of lending the data that the transaction with the raised priority holds. We compare the proposed scheme with DO2PL_PA(Distributed Optimistic Two-Phase Locking) and MIRROR(Managing Isolation in Replicated Real-time Object Repositories) protocol in terms of the arrival rate of transactions, the size of transactions, the write probability of transactions, and the replication degree of data in a firm-deadline real-time database system based on two-phase commit protocol. It is shown through the performance evaluation that our scheme outperforms the existing schemes.

  • PDF

Design and Implementation of Real-Time Static Locking Protocol for Main-memory Database Systems (주기억장치 데이타베이스 시스템을 위한 실시간 정적 로킹 기법의 설계 및 구현)

  • Kim, Young-Chul;You, Han-Yang;Kim, Jin-Ho;Kim, June;Seo, Sang-Ku
    • Journal of KIISE:Databases
    • /
    • v.29 no.6
    • /
    • pp.464-476
    • /
    • 2002
  • Main-memory database systems which reside entire databases in main memory are suitable for high-performance real-time transaction processing. If two-phase locking(2PL) as concurrency control protocol is used for the transactions accessing main-memory databases, however, the possibility of lock conflict will be low but lock operations become relatively big overhead in total transaction processing time. In this paper, We designed a real-time static locking(RT-SL) protocol which minimizes lock operation overhead and reflects the priority of transactions and we implemented it on a main-memory real-time database system, Mr.RT. We also evaluate and compare its performance with the existing real-time locking protocols based on 2PL such as 2PL-PI and 2PL-HP. The extensive experiments reveal that our RT-SL outperforms the existing ones in most cases.

Design and Implementation of a Main-memory Storage System for Real-time Retrievals (실시간 검색을 위한 다중 사용자용 주기억장치 자료저장 시스템 개발)

  • Kwon, Oh-Su;Hong, Dong-Kweon
    • The KIPS Transactions:PartD
    • /
    • v.10D no.2
    • /
    • pp.187-194
    • /
    • 2003
  • Main Memory storage system can increase the performance of the system by assigning enough slack time to real-time transactions. Due to its high response time of main memory devices, main memory resident data management systems have been used for location management of personal mobile clients to cope with urgent location related operations. In this paper we have developed a multi-threaded main memory storage system as a core component of real-time retrieval system to handle a huge amount of readers and writers of main memory resident data. The storage system is implemented as an embedded component which is working with the help of a disk resident database system. It uses multi-threaded executions and utilizes latches for its concurrency control rather than complex locking method. It only saves most recent data on main memory and data synchronization is done only when disk resident database asks for update transactions. The system controls the number of read threads and update threads to guarantee the minimum requirements of real-time retrievals.

Dynamic Copy Security Protocol In Real-Time Database Systems (실시간 데이터베이스 시스템에서의 동적 복사 보안 프로토콜)

  • Park, Su-Yeon;Lee, Seung-Ryong;Jeong, Byeong-Su;Seung, Hyeon-U
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.8
    • /
    • pp.955-963
    • /
    • 1999
  • 다단계 보안 실시간 데이타베이스 시스템은 데이타베이스의 일관성 유지와 실시간 요구인 마감시간의 만족, 그리고 기밀성을 띤 데이타가 노출될 수 있는 비밀채널(covert-channel)의 방지라는 요구사항을 모두 만족해야 한다. 기존의 SRT-2PL(Secure Real-Time 2 Phase Locking)은 원본과 복사본으로 데이타 객체를 분리시켜 다른 등급간에 불간섭(non-interference)을 유지하여 비밀채널의 방지를 가능하게 하였으나, 복사본이 모든 데이타 객체에 대해 항상 존재하므로 메모리의 낭비가 있을 수 있고, 복사본의 갱신을 위한 갱신 큐의 관리에 따르는 오버헤드와 그에 따른 예측성 결여라는 문제점을 갖고 있다. 이를 개선하기 위하여 본 논문에서는 다단계 보안 실시간 데이타베이스 시스템의 요구사항을 모두 만족하는 동적 복사 프로토콜을 제안한다. 동적 복사 프로토콜은 로킹 기법을 기초로 동작하고, 트랜잭션의 작업에 따라 동적으로 복사본을 생성하고 삭제한다. 모의 실험 결과 제안한 동적 복사 프로토콜은 비밀채널을 방지하고 동적인 복사본의 생성으로 SRT-2PL의 단점인 메모리 낭비를 줄일 수 있으며, 예측성을 높여 마감시간 오류율을 감소시켰다.Abstract Concurrency control of real-time secure database system must satisfy not only logical data consistency but also timing constraints and security requirements associated with transactions. These conflicting natures between timing constraints and security requirements are often resolved by maintaining several versions(or secondary copies) on the same data items. In this paper, we propose a new lock-based concurrency control protocol, Dynamic Copy Security Protocol, ensuring both two conflicting requirements. Our protocol aims for reducing the storage overhead of maintaining secondary copies and minimizing the processing overhead of update history. Main idea of our protocol is to keep a secondary copy only when it is needed to resolve the conflicting read/write operations in real time secure database systems. For doing this, a secondary copy is dynamically created and removed during a transaction's read/write operations according to our protocol. We have also examined the performance characteristics of our protocol through simulation under different workloads while comparing the existing real time security protocol. The results show that our protocol consumed less storage and decreased the missing deadline transactions.

On a Concurrency Control and an Interface Design of Collaboration-aware Applications (공동작업을 위한 응용 프로그램에서의 동시성 제어 문제 및 인터페이스 설계 에 관한 연구)

  • Yun, Seok-Hwan;Lee, Jae-Yeong;Park, Chi-Hang;Sin, Yong-Baek
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.3
    • /
    • pp.631-639
    • /
    • 1996
  • In this paper we discuss the elements which must be considered for collaboration- aware application design and their effcets on user interfaces. Collaboration-aware applications have inter-user and user/system interaction features besides generic real-time distribution system features and this restricts the design freedom with the requirement of consistent user interfaces. Programmers, therefore, must provide uniform and logically consistent user interfaces to user and, for this end, they should consider main design features such as concurrency control algorithms, system topology and object replication scheme. Among the design factors concurrency control algorithms have relatively significant impact on user interfaces and we consider the impact of concurrency control agorithms along with that of thesystem to pologyand the objectreplication scheme. Coshed/SAS, a groupeditor, is given as an example of application of the factors.

  • PDF

Simulation of Multiversion Real-time Transactions in Database Systems for Factory Automation (공장 자동화를 위한 데이터베이스 시스템에서의 다중 버전 실시간 트랜잭션의 시뮬레이션)

  • 유인관
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.1
    • /
    • pp.125-134
    • /
    • 1994
  • In real-time database systems, transactions's commitment done before the given deadlines is more important than just getting the maximum throughput. Transactions missing the given deadlines are no longer meaningful in real-time applications. Therefore, there is a need for new transaction processing models to meet the given deadlines in real-time database applications, because moat conventional transaction models are not designed to meet deadlines. In this paper we propose a new transaction models which uses multiple versions of a data item. The model uses read-from graphs and dynamic reorder of transactions to meet deadlines. A read-from graph contains the past read semantics of read operations and support the model to decide which database operation to be taken. Then, we show simulation results comparing the proposed model with other transaction models such as two phase locking model and the optimistic concurrency control model.

  • PDF

PSMVL : A Concurrency Control Protocol for Real-Time Secure Database Systems

  • Park, Chan-jung;Park, Seog
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.5
    • /
    • pp.89-99
    • /
    • 1997
  • The application for real-time database systems must satisfy timing constraints. Typically the timing constraints are expressed in the form of deadlines which are represented by priorities to e used by schedulers. In any real-time applications, since the system maintains sensitive information to be shared by multiple users with different levels of security clearance, security is another important requirement. As more advanced database systems are being used in applications that need to support timeliness while managing sensitive information, protocols that satisfy both requirements need to be developed. In this appear, we proposed a new priority-driven secure multiversion locking (PSMVL) protocol for real-time secure database systems. The schedules produced by PSMVL are proven to e one-copy serializable. We have also shown tat the protocol eliminates covert channels and priority inversions. The details of the protocol, including the compatibility matrix and the version selection algorithms are presented. the results of the performance comparisons of our protocol with other protocols are described.

  • PDF